
ptg47401904

From the Library of Jan Wielemans

ptg47401904

Managing Technical Debt

From the Library of Jan Wielemans

ptg47401904The SEI Series in Software Engineering is a collaborative undertaking of
the Carnegie Mellon Software Engineering Institute (SEI) and Addison-

Wesley to develop and publish books on software engineering and related
topics. The common goal of the SEI and Addison-Wesley is to provide the
most current information on these topics in a form that is easily usable by
practitioners and students.

Titles in the series describe frameworks, tools, methods, and technologies
designed to help organizations, teams, and individuals improve their technical
or management capabilities. Some books describe processes and practices for
developing higher-quality software, acquiring programs for complex systems,

system architecture and product-line development. Still others, from the SEI’s
CERT Program, describe technologies and practices needed to manage software
and network security risk. These and all titles in the series address critical
problems in software engineering for which practical solutions are available.

Visit informit.com/sei for a complete list of available publications.

The SEI Series in Software Engineering

Make sure to connect with us!
informit.com/socialconnect

From the Library of Jan Wielemans

http://Visitinformit.com/sei
http://informit.com/socialconnect

ptg47401904

Managing Technical Debt

Reducing Friction in Software Development

Philippe Kruchten
Robert Nord
Ipek Ozkaya

From the Library of Jan Wielemans

ptg47401904

Executive Editor
Kim Spenceley

Development Editor
Kiran Kumar Panigrahi

Managing Editor
Sandra Schroeder

Senior Project Editor
Lori Lyons

Copy Editor
Catherine D. Wilson

Indexer
Ken Johnson

Proofreader
Abigail Manheim

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

No warranty. This Carnegie Mellon University and Software Engineering Institute
material is furnished on an “as-is” basis. Carnegie Mellon University makes no warranties
of any kind, either expressed or implied, as to any matter including, but not limited to,
warranty of fitness for purpose or merchantability, exclusivity, or results obtained from
use of the material. Carnegie Mellon University does not make any warranty of any kind
with respect to freedom from patent, trademark, or copyright infringement.

Special permission to reproduce portions of the texts and images was granted by the
Software Engineering Institute.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling,
Carnegie Mellon, CERT, and CERT Coordination Center are registered in the U.S.
Patent and Trademark Office by Carnegie Mellon University.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019931698

Copyright © 2019 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request
forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-564593-2
ISBN-10: 0-13-564593-X

1 19

From the Library of Jan Wielemans

mailto:at$$$corpsales@pearsoned.com
mailto:contact$$$governmentsales@pearsoned.com.
mailto:contact$$$intlcs@pearson.com.
http://informit.com/aw
http://www.pearsoned.com/permissions/

ptg47401904

To Sylvie, Nicolas, Alice, Zoé, Harmonie,
Claire, and Henri

—PK

To Victoria and Richard
—RN

To Ibrahim, Zeynep, and Zehra
—IO

From the Library of Jan Wielemans

ptg47401904

vi

Contents at a Glance

Foreword . xiii

Preface . xv

Acknowledgments . xix

About the Authors . xxi

About the Contributors . xxiii

Acronyms . xxv

SEI Figures for Managing Technical Debt .xxvii

Part I: Exploring the Technical Debt Landscape 1

Chapter 1: Friction in Software Development . 3

Chapter 2: What Is Technical Debt? . 19

Chapter 3: Moons of Saturn—The Crucial Role of Context 37

Part II: Analyzing Technical Debt . 49

Chapter 4: Recognizing Technical Debt . 51

Chapter 5: Technical Debt and the Source Code . 65

Chapter 6: Technical Debt and Architecture . 83

Chapter 7: Technical Debt and Production . 103

Part III: Deciding What Technical Debt to Fix 115

Chapter 8: Costing the Technical Debt . 117

Chapter 9: Servicing the Technical Debt . 131

From the Library of Jan Wielemans

ptg47401904

Contents at a Glance vii

Part IV: Managing Technical Debt Tactically
and Strategically . 149

Chapter 10: What Causes Technical Debt? . 151

Chapter 11: Technical Debt Credit Check . 167

Chapter 12: Avoiding Unintentional Debt . 179

Chapter 13: Living with Your Technical Debt . 195

Glossary . 207

References . 209

Index . 217

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

Contents

Foreword . xiii

Preface . xv

Acknowledgments . xix

About the Authors . xxi

About the Contributors . xxiii

Acronyms . xxv

SEI Figures for Managing Technical Debt .xxvii

Part I: Exploring the Technical Debt Landscape 1

Chapter 1: Friction in Software Development . 3

The Promise of Managing Technical Debt . 3
Technical Debt A-B-C . 5
Examples of Technical Debt . 6
Your Own Story About Technical Debt? . 11
Who Is This Book For? . 12
Principles of Technical Debt Management . 13
Navigating the Concepts of the Book . 14
What Can You Do Today? . 16
For Further Reading . 17

Chapter 2: What Is Technical Debt? . 19

Mapping the Territory . 19
The Technical Debt Landscape . 20
Technical Debt Items: Artifacts, Causes, and Consequences 22
Principal and Interest . 24
Cost and Value . 27
Potential Debt versus Actual Debt . 32
The Technical Debt Timeline . 33
What Can You Do Today? . 35
For Further Reading . 35

ix

From the Library of Jan Wielemans

ptg47401904

Contentsx

Chapter 3: Moons of Saturn—The Crucial Role of Context 37

“It Depends…” . 37
Three Case Studies: Moons of Saturn . 39
Technical Debt in Context . 44
What Can You Do Today? . 48
For Further Reading . 48

Part II: Analyzing Technical Debt . 49

Chapter 4: Recognizing Technical Debt . 51

Where Does It Hurt? . 51
What Are the Visible Consequences of Technical Debt? 54
Writing a Technical Debt Description . 55
Understanding the Business Context for Assessing Technical Debt . . . 58
Assessing Artifacts Across the Technical Debt Landscape 60
What Can You Do Today? . 63
For Further Reading . 64

Chapter 5: Technical Debt and the Source Code . 65

Looking for the Magic Wand . 65
Understand Key Business Goals . 68
Identify Questions About the Source Code . 70
Define the Observable Measurement Criteria . 72
Select and Apply an Analysis Tool . 75
Document the Technical Debt Items . 76
Then Iterate . 78
What Happens Next? . 79
What Can You Do Today? . 80
For Further Reading . 81

Chapter 6: Technical Debt and Architecture . 83

Beyond the Code . 83
Ask the Designers . 86
Examine the Architecture . 89
Examine the Code to Get Insight into the Architecture 93
The Case of Technical Debt in the Architecture of Phoebe 94
What Can You Do Today? . 101
For Further Reading . 101

From the Library of Jan Wielemans

ptg47401904

Contents xi

Chapter 7: Technical Debt and Production . 103

Beyond the Architecture, the Design, and the Code 103
Build and Integration Debt . 106
Testing Debt . 109
Infrastructure Debt . 110
The Case of Technical Debt in the Production of Phoebe 110
What Can You Do Today? . 113
For Further Reading . 113

Part III: Deciding What Technical Debt to Fix 115

Chapter 8: Costing the Technical Debt . 117

Shining an Economic Spotlight on Technical Debt 117
Refine the Technical Debt Description . 119
Calculate the Cost of Remediation . 121
Calculate the Recurring Interest . 122
Compare Cost and Benefit . 123
Manage Technical Debt Items Collectively . 127
What Can You Do Today? . 129
For Further Reading . 130

Chapter 9: Servicing the Technical Debt . 131

Weighing the Costs and Benefits . 131
Paths for Servicing Technical Debt . 136
The Release Pipeline . 142
The Business Case for Technical Debt as an Investment 143
What Can You Do Today? . 146
For Further Reading . 147

Part IV: Managing Technical Debt Tactically
and Strategically . 149

Chapter 10: What Causes Technical Debt? . 151

The Perplexing Art of Identifying What Causes Debt 151
The Roots of Technical Debt . 153
What Causes Technical Debt? . 154
Causes Rooted in the Business . 155
Causes Arising from Change in Context . 157
Causes Associated with the Development Process 159
Causes Arising from People and Team . 162

From the Library of Jan Wielemans

ptg47401904

Contentsxii

To Conclude . 165
What Can You Do Today? . 165
For Further Reading . 166

Chapter 11: Technical Debt Credit Check . 167

Identifying Causes: Technical Debt Credit Check 167
Four Focus Areas for Understanding the State of a Project 170
Diagnosing the Causes of Technical Debt in Phoebe 172
Diagnosing the Causes of Technical Debt in Tethys 174
What Can You Do Today? . 177
For Further Reading . 178

Chapter 12: Avoiding Unintentional Debt . 179

Software Engineering in a Nutshell . 179
Code Quality and Unintentional Technical Debt 180
Architecture, Production, and Unintentional Technical Debt 185
What Can You Do Today? . 193
For Further Reading . 193

Chapter 13: Living with Your Technical Debt . 195

Your Technical Debt Toolbox . 195
On the Three Moons of Saturn… . 201
Technical Debt and Software Development . 204
Finale . 205

Glossary . 207

References . 209

Index . 217

Register your copy of Managing Technical Debt at informit.com for convenient
access to downloads, updates, and corrections as they become available. To start the
registration process, go to informit.com/register and log in or create an account.
Enter the product ISBN 9780135645932 and click Submit. Once the process is com-
plete, you will find any available bonus content under “Registered Products.”

From the Library of Jan Wielemans

http://informit.com
http://informit.com/register

ptg47401904

xiii

Foreword

In the late 1500s, a road was built encircling the island on which I now live. Well, not
a road exactly, but more of a modest walking path, serving to connect the many
small farming and fishing villages that flourished at that time. But, times change, and
with the arrival of the whaling boats and the missionaries and the plantation owners
in the 1800s, there was a clear economic incentive to reduce the friction of travel and
to increase the capacity of transport. As such, using that original path as its architec-
tural foundation, a wider road was built to accommodate horses and trains and the
emerging motor car. Times changed yet again, and World War II necessitated yet
wider and stronger roads, but—not surprisingly—corners were cut owing to the
expediency of conflict. After the war, when the whalers, missionaries, plantation
owners, and sailors were but an historical memory, that road remained, but now
served to accommodate the cars of visitors who were arriving in alarmingly increas-
ing numbers. Money for infrastructure being what it is, a new road was planned, but
only partly built. The cost of maintaining the old parts of the road cut into the funds
for building the new parts; but then, this is the nature of all systems. Even now, times
change, and this time it is climate change, manifesting itself in the rise of the ocean
and projected to reach three feet within the century. Already the ocean is encroaching
on that ancient path and beginning to inundate the road in ways that make its
replacement inevitable and urgent.

Software-intensive systems are a lot like that: Foundations are laid, corners are cut
for any number of reasons that seem defensible at the time; but in the fullness of
time, the relentless accretion of code over months, years, and even decades quickly
turns every successful project into a legacy one. It is fascinating to watch young com-
panies that grew quickly, unfettered by legacy code, suddenly wake up one day and
realize that developing long-lived, quality software-intensive systems is hard.

What you have before you is an incredibly wise and useful book. Philippe, Ipek,
Robert, and the other contributors have considerable real-world experience in deliv-
ering quality systems that matter, and their expertise shines through in these pages.
Here you will learn what technical debt is, what is it not, how to manage it, and how
to pay it down in responsible ways.

From the Library of Jan Wielemans

ptg47401904

Forewordxiv

This is a book I wish I had when I was just beginning my career; but then, it
couldn’t have been written until now. The authors present a myriad of case studies,
born from years of their experience, and offer a multitude of actionable insights for
how to apply it to your project. Read this book carefully. Read it again. There’s use-
ful information on every page which, quite honestly, will change the way you
approach technical debt in good and proper ways.

—Grady Booch
IBM Fellow

January 2019

From the Library of Jan Wielemans

ptg47401904

Preface

Philippe: I ran into technical debt long before I had a name for it. In 1980, I was
working at Alcatel on some peripheral device, and the code had to fit in 8 kilobytes
(kB) of ROM (Read-Only Memory). With the deadline to “burn” the ROMs
approaching, we did a lot of damage to the code to make it fit, thinking, “Oh, for the
next release we’ll have 16 kB available, we’ll make it right…” We did get 16 kB of
ROM for the next release, but we never, ever fixed all the abominable things we had to
do to the source code because the deadline for the next product was, again, too close.
New programmers coming on board would say, “Wow, this is ugly, brain-damaged,
awful. How did you end up writing such bad code?” Colleagues would reply, “Oh,
yes, go ask Philippe, he’ll explain why it’s like that. At least, on the bright side, it
does the job and passes all the tests. So, fix that code at your own risk.”

Robert: With the advent of agile practice, I was interested in hearing stories from
developers about how it scales. Two projects in different organizations at the time
were adopting agile and had recognized the importance of an end-to-end perfor-
mance requirement. The demos for the minimal viable product were an unquestion-
able success. It just so happened that in each case, the demo sparked a new
high-volume bandwidth requirement. One project was able to take the new require-
ment in stride while the other project “hit the wall,” as Philippe would say. The archi-
tecture and supporting processes were not sufficiently flexible to allow the project to
quickly adapt. This got me thinking about the choices that developers make to pro-
duce more features or to invest in architecture and infrastructure.

Ipek: I believe software engineering is first an economic activity. While in principle
budget, schedule, and other business concerns should drive your design choices, that
has not been my experience in many of the systems I worked on. A package routing
system, let us call it the GIS-X, is a canonical example. I was part of the team that
conducted an architectural evaluation of the system in 2007. The development team
was tasked to incorporate advanced geographic information processing to GIS-X to
optimize driving routes. As the schedule realities started to take priority, each of the
five development teams working on the project started diverging from the design.
Among several other technical issues, one key mistake the organization made was
not assigning an architecture owner to keep the design, business, and resource con-
straints in check.

xv

From the Library of Jan Wielemans

ptg47401904

Prefacexvi

Around 2005–2008 the concept of technical debt started to emerge, in the form of
myriads of blog entries, mostly in the agile process community. We realized that
developers understood technical debt very well, even when they were not calling it
that, but the business side of their organizations had little insight and saw it as very
similar to defects. The three of us met several times around that time, and we initially
worked on developing a little game about hard choices to help software teams get a
better feeling for what technical debt is about. As we found more people both in
industry and academia willing to understand more about this strange concept that
did not fit very well in any software engineering narrative, we started in 2010 organ-
izing a series of workshops on Managing Technical Debt, initially sponsored by the
Software Engineering Institute (SEI), to explore more thoroughly the concept. We’ve
had one workshop a year since. They have grown in importance and are now a series
of annual TechDebt conferences.

The three of us wrote papers together and made presentations—short ones, long
ones—to diverse audiences all around the world. Our varied views started to con-
verge in 2015, and this is when we thought of writing a book about technical debt. It
proved to be still a bit of a moving target.

We interacted with many people over the past eight years or so, and the book you
have in hand is the result of these collaborations with hundreds of people. With their
help, we made great strides in understanding the phenomenon behind the simple
metaphor of technical debt. We think we now better understand where technical
debt comes from, what consequences it has on software-intensive development pro-
jects, and what form this technical debt actually takes. We now say with certainty
that all systems have technical debt, and managing technical debt is a key software
engineering practice to master for any software endeavor to succeed. We’ve heard
how different organizations cope with it. We looked at and tried tools promising to
perform miracles with technical debt. We also understood the limits of the simple
financial metaphor: We realize now that technical debt is not quite like your house
mortgage.

This book is intended for the many practitioners who’ve heard the term and those
who think that it may have some relevance in their context. Hopefully it will give you
tools to analyze your own situation and put names on events and artifacts you are
confronted with.

This is not a scientific treatise, full of data and statistics. There are other venues
for this. But we will give you concrete examples that you can relate to. It is also illus-
trated with stories that some of our friends from our industry have contributed, tell-
ing you their experience of technical debt in their own words.

Philippe: I now see that my 1980s story about 8 kB of ROM is a very clear-cut case
of technical debt, triggered by pure schedule pressure, with severe consequences on
the maintainability of this small piece of code. I attended the 1992 OOPSLA

From the Library of Jan Wielemans

ptg47401904

Preface xvii

conference in Vancouver where Ward Cunningham used the term “technical debt”
for the first time. At last I had a name for it.

Robert: Reflecting on the two projects adopting agile, I first approached the prob-
lem thinking that architecture infrastructure needed to be equally visible as features
in the product backlog. That gave me some, but not all, the tools I needed to under-
stand the choice in selecting one or the other. I now see that adding technical debt
items to the backlog brings visibility to the long-term consequences of the choices as
they are made together with more needed tools to strategically plan and monitor
those choices as technical debt.

Ipek: A few months ago in one of the software architecture courses I teach at the
Software Engineering Institute (SEI), an attendee approached me to ask if I had ever
worked on the GIS-X system. He happened to be one of the engineering managers
on the team. He recalled our recommendations and in reflection reassured me that
while at the time we did not phrase our findings using the words, we were spot on
that the technical debt they had resulted in the project being canceled. A full circle
moment.

It does not stop here. Now you will have to share with us and the community your
stories about technical debt. This book is not the end…only a start.

Philippe Kruchten, Vancouver
Robert Nord, Pittsburgh
Ipek Ozkaya, Pittsburgh

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

xix

Acknowledgments

Many colleagues attended the Managing Technical Debt (MTD) workshops over the
years that provided an opportunity to exchange ideas and improve practice. The idea
of the technical debt landscape grew out of a working session at the Third Interna-
tional Workshop on Technical Debt at the International Conference on Software
Engineering (ICSE) in Zurich in 2012. A week-long Dagstuhl Seminar on Managing
Technical Debt in Software Engineering in 2016 produced a consensus definition for
technical debt, a draft conceptual model, and a research roadmap. Paris Avgeriou
and Carolyn Seaman, early pioneers in managing technical debt, joined us in organ-
izing events and guiding the community. Tom Zimmermann provided generous sup-
port from ICSE as the MTD workshop series transformed into a conference. He
helped make the inaugural edition of the TechDebt Conference in 2018 a success
where researchers, practitioners, and tool vendors could explore theoretical and
practical techniques that manage technical debt.

We are grateful to Robert Eisenberg, Michael Keeling, Ben Northrop, Linda
Northrop, Eltjo Poort, and Eoin Woods, who shared their experience and wisdom in
the form of sidebars. We also appreciate the software engineers, developers, project
managers, and people on the business side of the organization for sharing their sto-
ries and practices from the trenches.

Special thanks to Len Bass and Hasan Yasar, who contributed their expertise to
the chapter on technical debt and production. Kevin Sullivan presented the net pre-
sent value (NPV) and real options example at our very first workshop on technical
debt in 2010, and Steve McConnell refined it in subsequent discussions.

Thanks go to the experts for their thorough and helpful reviews of different drafts
of the manuscript that helped make this a better book. These include Paris Avgeriou,
Felix Bachmann, Len Bass, Stephany Bellomo, Robert Eisenberg, Neil Ernst, George
Fairbanks, Shane Hastie, James Ivers, Clemente Izurieta, Rick Kazman, Nicolas
Kruchten, Jean-Louis Letouzey, Ben Northrop, Linda Northrop, Eltjo Poort, Chris
Richardson, Walker Royce, Carolyn Seaman, Eoin Woods, and Hasan Yasar.

At the SEI, James Ivers, head of the SEI’s Architecture Practices initiative, pro-
vided steady and persistent support for this effort. The SEI has been involved in tech-
nical debt research for many years, and the work of our colleagues helped shape our
thinking on the topic with contributions from Felix Bachmann, Stephany Bellomo,
Nanette Brown, Neil Ernst, Ian Gorton, Rick Kazman, Zach Kurtz, and Forrest

From the Library of Jan Wielemans

ptg47401904

Acknowledgmentsxx

Shull. Linda Northrop led the SEI program that was instrumental in the develop-
ment of the field of software architecture and in influencing our ideas about architec-
ture in the technical debt landscape. She was also our mentor throughout the journey.
Jim Over, Anita Carleton, and Paul Nielsen supported transitioning the work in
managing technical debt to practice, including this book. Thanks to Kurt Hess for
working with us to transform many of the concepts into the figures that illustrate the
book. Tamara Marshall-Keim was invaluable in helping us untangle and clearly com-
municate complex concepts. Her knowledge of the domain and editing expertise
made significant improvements to the content of the book.

At the University of British Columbia, we thank graduate students Erin Lim, Ke
Dai, and Jen Tsu Hsu, who went boldly into the wild world of software and system
development and investigated what technical debt actually looked like. And more
recently another student, Mike Marinescu, helped us with the book production.

At Pearson Education, Kim Spenceley and Chris Guzikowski provided guidance
and support. Our thanks also go to our copy editor, Kitty Wilson, production editor,
Lori Lyons, and the team of production professionals.

Finally, we thank our families and friends for their encouragement and support.

From the Library of Jan Wielemans

ptg47401904

xxi

About the Authors

Philippe Kruchten is a professor of software engineering at the University of British
Columbia in Vancouver, Canada. He joined academia in 2004, after a 30+-year
career in industry, where he worked mostly with large software-intensive systems
design in the domains of telecommunication, defense, aerospace, and transportation.
Some of his experience in software development is embodied in the Rational Unified
Process (RUP), whose development he directed from 1995 until 2003. He’s the author
or co-author of Rational Unified Process: An Introduction (Addison-Wesley, 1998),
RUP Made Easy: A Practitioner’s Guide (Addison-Wesley, 2003), and Software Engi-
neering with UPEDU (Addison-Wesley, 2003), as well as earlier books about pro-
gramming in Pascal and Ada. He received a doctoral degree in information systems
(1986) and a mechanical engineering degree (1975) from French engineering schools.

Robert Nord is a principal researcher at the Carnegie Mellon University Software
Engineering Institute, where he works to develop and communicate effective meth-
ods and practices for agile at scale, software architecture, and managing technical
debt. He is coauthor of the practitioner-oriented books Applied Software Architec-
ture (Addison-Wesley, 2000) and Documenting Software Architectures: Views and
Beyond (Addison-Wesley, 2011) and lectures on architecture-centric approaches. He
received a PhD in computer science from Carnegie Mellon University and is a distin-
guished member of the ACM.

Ipek Ozkaya is a principal researcher at the Carnegie Mellon University Software
Engineering Institute. Her primary work includes developing techniques for improv-
ing software development efficiency and system evolution, with an emphasis on soft-
ware architecture practices, software economics, agile development, and managing
technical debt in complex, large-scale software-intensive systems. In addition, as
part of her responsibilities, she works with government and industry organizations
to improve their software architecture practices. She received a PhD in Computa-
tional Design from Carnegie Mellon University. Ozkaya is a senior member of IEEE
and the 2019–2021 editor-in-chief of IEEE Software magazine.

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

About the Contributors

Robert Eisenberg is a retired Lockheed Martin Fellow with more than 30 years of
experience in the full lifecycle development of large-scale software systems. His areas
of expertise include software methodologies and processes, schedule and earned
value management, agile transformation, and technical debt management. He led
the Lockheed Martin corporate initiative on the development of practices and meth-
ods for managing technical debt and assisted many programs in their application.
Robert also led the Lockheed Martin Space Systems business area initiative to
develop and implement new business models and practices based on lean and agile
principles. He has presented at multiple workshops and conferences on both techni-
cal debt management and agile methods, practices, and transformation. Robert
received an MS in computer science from the University of Virginia and a BS in com-
puter science from the University of Delaware.

Michael Keeling is a professional software engineer and the author of Design It!
From Programmer to Software Architect (Pragmatic Bookshelf, 2017). Keeling cur-
rently works at LendingHome and has also worked at IBM, Vivisimo, BuzzHoney,
and Black Knight Technology. Keeling has an MS degree in software engineering
from Carnegie Mellon University and a BS degree in computer science from the
College of William and Mary. Contact him via Twitter @michaelkeeling or his website,
https://www.neverletdown.net.

Ben Northrop is the founder of Highline Solutions, a Pittsburgh-based digital consul-
tancy focused on the architecture, development, and deployment of large-scale cus-
tom software systems. In his 20 years of experience, Ben has helped to build dozens of
systems across a number of industries, including transportation, finance, telecommu-
nications, higher education, and retail. He holds two degrees from Carnegie Mellon
University: a BS in Information and Decision Systems and an MS in Logic, Computation,
and Methodology. His writing can be found at www.bennorthrop.com.

Linda Northrop has more than 45 years of experience in the software development
field as a practitioner, researcher, manager, consultant, author, speaker, and educa-
tor. She is a Fellow at Carnegie Mellon University’s Software Engineering Institute

xxiii

From the Library of Jan Wielemans

https://www.neverletdown.net
http://www.bennorthrop.com

ptg47401904

About the Contributorsxxiv

(SEI). Under her leadership, the SEI developed software architecture and product line
methods and a series of highly acclaimed books and courses that are used world-
wide. Northrop also co-authored Software Product Lines: Practices and Patterns
(Addison-Wesley, 2002). She led a cross-disciplinary, national research group on
ultra-large-scale systems that resulted in the book Ultra-Large-Scale Systems: The
Software Challenge of the Future. Her current professional interests are software
architecture, ultra-large-scale systems, and software innovations to aid children with
different abilities. Find Linda Northrop at http://www.sei.cmu.edu/about/people/
profile.cfm?id=northrop_13182.

Eltjo R. Poort leads the architecture practice at CGI in the Netherlands. In his
30-year career in the software industry, he has fulfilled many engineering and project
management roles. In the 1990s, he oversaw the implementation of the first SMS text
messaging systems in the United States. In the past decade, he has produced various
publications on improving architecting practices, including his PhD thesis in 2012.
Eltjo is best known for his work on risk- and cost-driven architecture, a set of princi-
ples and practices for agile solution architecting, for which he received the Linda
Northrop Software Architecture Award in 2016. His solution architecture blog can
be found at eltjopoort.nl. In his spare time, Eltjo plays the violin in Symfonieorkest
Nijmegen. Eltjo is a member of the IFIP Working Group 2.11 on Software
Architecture.

Eoin Woods is the CTO of Endava, a technology company that delivers projects in
the areas of digital, agile, and automation. Prior to joining Endava, Eoin worked in
the software engineering industry for 20 years, developing system software products
and complex applications in the capital markets domain. His main technical inter-
ests are software architecture, distributed systems, and computer security. He is edi-
tor of the IEEE Software “Pragmatic Architect” column, co-authored the well-known
software architecture book Software Systems Architecture (Addison-Wesley, 2011),
and received the 2018 Linda M. Northrop Award for Software Architecture, awarded
by the SEI at Carnegie Mellon University. Eoin can be contacted via his website, at
www.eoinwoods.info.

From the Library of Jan Wielemans

http://www.sei.cmu.edu/about/people/profile.cfm?id=northrop_13182
http://www.sei.cmu.edu/about/people/profile.cfm?id=northrop_13182
http://eltjopoort.nl
http://www.eoinwoods.info

ptg47401904

Acronyms

5W Five Ws: Who, What, Where, When, Why

A2DAM Agile Alliance Debt Analysis Method

AADL Architecture Analysis and Design Language

ADL Architecture Description Language

ALM Application Lifecycle Management

API Application Programming Interface

ATAM Architecture Tradeoff Analysis Method

CISQ Consortium for IT Software Quality

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DB Database

FLOSS Free, Libre, Open-Source Software

FTE Full-time Equivalent

I18N Internationalization

IRAD Independent Research and Development

ISO International Organization for Standardization

L10N Localization

MVP Minimum Viable Product

NPV Net Present Value

OMG Object Management Group

ROI Return On Investment

SaaS Software as a Service

SAFe® Scaled Agile Framework®

SLOC Source Lines of Code

SOA Service-Oriented Architecture

SQALE Software Quality Assessment based on Lifecycle Expectations

SysML Systems Modeling Language

UML Unified Modeling Language

UX User Experience

xxv

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

xxvii

SEI Figures for Managing
Technical Debt

Special permission to reproduce portions of the following texts and images was
granted by the Software Engineering Institute:

Chapter Page
Number

Figure
Number

Description

1 Page 14 P1-1 Principle 1: Technical debt reifies an abstract
concept

Page 15 F1-1 Major concepts of technical debt

2 Page 20 F2-1 Technical Debt Landscape

Page 24 C2-A Solution U is cheaper than V

Page 25 C2-B W over V is cheaper than W over U

Page 26 C2-C Pay interest, or repay the principal

Page 27 C2-D Pay more interest, or repay the higher principal

Page 32 P2-2 Principle 2: If you do not incur any form of
interest, then you probably do not have actual
technical debt

Page 33 2-2 Technical Debt Timeline

3 Page 37 F3-1 “It depends”: The many factors of context

Page 45 P3-3 Principle 3: All Systems Have Technical Debt

4 Page 53 F4-1 Timeline: Reaching the awareness point

Page 55 P4-4 Technical debt must trace to the system

Page 60 F4-2 Identifying technical debt items

Page 63 F4-3 The four things to do in development product
backlog

5 Page 66 F5-1 Results of the code analysis for Phoebe

Page 67 P5-5 Technical debt is not synonymous with bad
quality

From the Library of Jan Wielemans

ptg47401904

SEI Figures for Managing Technical Debtxxviii

6 Page 86 P6-6 Architecture technical debt has the highest cost
of ownership

Page 98 F6-1 Exploring the cause-and-effect relationships
underlying the problem of unexpected crashes

7 Page 104 F7-1 Code release pipeline

Page 107 P7-7 Principle 7: All code matters!

8 Page 118 F8-1 Timeline: Reaching the tipping point

Page 124 P8-8 Technical debt has no absolute measure—neither
for principal nor interest

Page 128 F8-2 Grooming the product backlog

9 Page 132 F9-1 Timeline: Reaching the remediation point

Page 134 C9-Sidebar Risk exposure and opportunity cost

Page 139 P9-9 Principle 9: Technical debt depends on the future
evolution of the system

Page 142 F9-2 Release planning

Page 144 F9-3 NPV of alphaPlus

Page 145 F9-4 NPV of alphaPlus with technical debt

Page 145 F9-5 NPV of alphaPlus with technical debt repayment

Page 146 F9-6 Real options: The decision to add features or
refactor

10 Page 153 F10-1 The occurrence of technical debt on our timeline

Page 154 F10-2 Main causes of technical debt

11 Page 173 F11-1 Scorecard for causes of technical debt in the
Phoebe project

Page 175 F11-2 Scorecard for causes of technical debt in the
Tethys project

Page 177 F11-3 Tethys and the technical debt timeline

12 No figures

13 Page 196 F13-1 Timeline for an organization incurring
unintentional technical debt

Page 205 F13-2 Timeline for a technical debt-aware organization

(SEI trademarks used in this book are registered trademarks of Carnegie Mellon
University.)

From the Library of Jan Wielemans

ptg47401904

Chapter 1: Friction in Software Development

Chapter 2: What Is Technical Debt?

Chapter 3: Moons of Saturn—The Crucial Role of Context

PART I

Exploring the Technical Debt
Landscape

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

3

Chapter 1

Friction in Software
Development

There is still much friction in the process of crafting complex software; the
goal of creating quality software in a repeatable and sustainable manner
remains elusive to many organizations, especially those who are driven to
develop in Internet time.

—Grady Booch

Is the productivity of your software organization going down? Is your code base
harder and harder to evolve every week? Is the morale of your team declining? As
with many other successful software endeavors, you are probably suffering from the
inability to manage friction in your software development and may have a pervasive
case of technical debt.

Why should you care about technical debt? How does it manifest itself? How is it
different from software quality? In this chapter, we introduce the metaphor of tech-
nical debt and present typical situations where it exists.

The Promise of Managing Technical Debt

Understanding and managing technical debt is an attractive goal for many organiza-
tions. Proactively managing technical debt promises to give organizations the ability
to control the cost of change in a way that integrates technical decision making and
software economics seamlessly with software engineering delivery.

The term technical debt is not new. Ward Cunningham introduced it in 1992 to
communicate the delicate balance between speed and rework in pursuit of delivering
functioning quality software. And the concepts it encompasses are not new either.

From the Library of Jan Wielemans

ptg47401904

Chapter 1 Friction in Software Development4

Ever since we started creating software products, we have been grappling with this
issue under other names: software maintenance, software evolution, software aging,
software decay, software system reengineering, and so on.

You can think of technical debt as an analogy with friction in mechanical devices;
the more friction a device experiences due to wear and tear, lack of lubrication, or bad
design, the harder it is to move the device, and the more energy you have to apply to get
the original effect. At the same time, friction is a necessary condition of mechanical parts
working together. You cannot eliminate it completely; you can only reduce its impact.

Slowly, over the past ten years, many large companies whose livelihoods depend on
software have realized that technical debt, under this or any other name, is very real
and crippling their ability to satisfy customer desires. Technical debt has started to
translate into financial impact. At some point in the past, companies may have made a
trade-off to take on technical debt to deliver quickly or scale quickly, threw more peo-
ple at the problem when the debt mounted, and never reduced or managed the debt.
It is not a proper debt, from an accounting perspective, but the specter of huge costs
somewhere on the path ahead will negatively affect the company’s financial bottom
line. Government organizations that are large buyers of software also now realize that
focusing only on initial development cost obscures the full cost of the software; they
have begun to demand justification of all lifecycle costs from the software industry.

Technical debt is pervasive: It affects all aspects of software engineering, from
requirements handling to design, code writing, the tools used for analyzing and
modifying code, and deployment to the user base. The friction caused by technical
debt is even apparent in the management of software development organizations, in
the social aspect of software engineering. Technical debt is the mirror image of soft-
ware technical sustainability; Becker and colleagues (2015) described technical debt
as “the longevity of information, systems, and infrastructure and their adequate
evolution with changing surrounding conditions. It includes maintenance, innova-
tion, obsolescence, data integrity, etc.” And it relates to the wider concern of sustain-
ability in the software industry—not only in the environmental sense but also in the
social and technical senses.

Progress on managing technical debt has been piecewise, and the workforce
tends to devalue this type of debt. So it remains a problem. Why do we think that
understanding and managing the problem as technical debt will have a different out-
come? Software engineering as a discipline is at a unique point at which several sub-
disciplines have matured to be part of the answer to the technical debt question.
For example, program analysis techniques, although not new, have recently become
sophisticated enough to be useful in industrial development environments. So,
they’re positioned to play a role in identifying technical debt in a way they weren’t
a few years ago. DevOps tooling environments that incorporate operations and
development further allow developers to analyze their code, locate issues before they

From the Library of Jan Wielemans

ptg47401904

Technical Debt A-B-C 5

become debt, and implement a faster development lifecycle. Developers also now
have the vocabulary to talk about technical debt as part of their software develop-
ment process and practices.

The technical debt concept resonates well with developers, as they look for a well-
defined approach to help understand the complex dependencies between software
artifacts, development teams, and decision makers and how to balance short-term
needs to keep the software product running with long-term changes to keep the
product viable for decades. In this way, technical debt can also be seen as a kind of
strategic investment and a way to mitigate risk.

Technical Debt A-B-C

Many practitioners today see technical debt as a somewhat evasive term to designate
poor internal code quality. This is only partly true. In this book, we will show that
technical debt may often have less to do with intrinsic code quality than with design
strategy implemented over time. Technical debt may accrue at the level of overall
system design or system architecture, even in systems with great code quality. It may
also result from external events not under the control of the designers and imple-
menters of the system.

This book is dedicated to defining principles and practices for managing technical
debt—defining it, dissecting it, providing examples to study it from various angles,
and suggesting techniques to manage it. Our definition of technical debt is as follows:

In software-intensive systems, technical debt consists of design or implementation

constructs that are expedient in the short term but that set up a technical context that can

make a future change more costly or impossible. Technical debt is a contingent liability

whose impact is limited to internal system qualities— primarily, but not only, maintainability

and evolvability.

We like this definition because it does not fall into the trap of considering only
the financial metaphor implied by the term debt. Although the metaphor carries an
interesting financial analogy, technical debt in software is not quite like a variable-
rate mortgage or an auto loan. It begins and accumulates in development artifacts
such as design decisions and code.

Technical debt also has a contingent aspect that depends on something else that
might or might not happen: How much technical debt you need to worry about
depends on how you want the system to evolve. We like that this definition does not
include defects in functionality (faults and failures) or external quality deficiencies
(serviceability), as lumping together defects and technical debt muddies the water.
System qualities, or quality attributes, are properties of a system used to indicate

From the Library of Jan Wielemans

ptg47401904

Chapter 1 Friction in Software Development6

how well the system satisfies the needs of its stakeholders. The focus on internal qual-
ity is the lens through which these deficiencies are seen from the viewpoint of the cost
of change. Technical debt makes the system less maintainable and more difficult to
evolve.

Technical debt is not a new concept. It is related to what practitioners have for
decades been calling software evolution and software maintenance, and it has
plagued the industry ever since developers first produced valuable software that
they did not plan to throw away or replace with new software but instead wanted to
evolve or simply maintain over time. The difference today is the increasing awareness
that technical debt, if not managed well, will bankrupt the software development
industry. Practitioners today have no choice but to treat technical debt management
as one of the core software engineering practices.

While technical debt can have dire consequences, it is not always as ominous as
it may sound. You can look at it as part of an overall investment strategy, a strategic
software design choice. If you find yourself spending all your time dealing with debt
or you reach the point where you cannot repay it, you have incurred bad debt. When
you borrow or leverage time and effort that you can and will repay in the future, you
may have incurred good debt. If the software product is successful, this strategy can
provide you with greater returns than if you had remained debt free. In addition, you
might also have the option to simply walk away from your debt if the software is not
successful. This dual nature of technical debt—both good and bad—makes grap-
pling with it a bit confusing for many practitioners.

We will return to the financial metaphor later to investigate whether there are
some software equivalencies to the financial ideas of principal, interest, repayment,
and even bankruptcy.

Examples of Technical Debt

To illustrate our definition, we offer a few stories about technical debt in software
development projects. You will see organizations struggling with their technical debt
and software development teams failing to strategize about it.

Quick-and-Dirty if-then-else
A company in Canada developed a good product for its local customers. Based on local

success, the company decided to extend the market to the rest of Canada and immediately

faced a new challenge: addressing the 20% of Canada that uses the French language in

most aspects of life. The developers labored for a week to produce a French version of the

product, planting a global flag for French = Yes or No as well as hundreds of if-then-else

statements all over the code. A product demo went smoothly, and they got the sale!

From the Library of Jan Wielemans

ptg47401904

Examples of Technical Debt 7

Then, a month later, on a trip to Japan, a salesperson proudly boasted that the software

was multilingual, returned to Canada with a potential order, and assumed that a Japanese

version was only one week of work away. Now the decision not to use a more sophisticated

strategy—such as externalizing all the text strings and using an internationalization

package—was badly hurting the developers. They would not only have to select and

implement a scalable and maintainable strategy but also have to undo all the quick-and-

dirty if-then-else statements.

For the Canadian company, the decision to use if-then-else statements spread the change
throughout the code, but it was a necessary quick-and-dirty solution from a business
perspective to get a quick sale. Doing the right thing at that stage would have postponed
the delivery of the system and likely lost them the deal. So even though the resulting
code was ugly—as well as hard to modify and evolve—it was the right decision. Now,
would you continue down that path and add another layer of if-then-else for each lan-
guage? Or would you rethink the strategy and decide to repay the original technical
debt? Inserting the Japanese version of the quick fix, with its issues of character sets and
vertical text, would be too much of a burden and a subsequent maintenance issue. You
may argue that a good designer would have set up provisions for internationalization
and localization right at the outset, but this is easy to say in hindsight; the demands and
constraints at the beginning of development for this small venture were quite different,
focused on the main features, and didn’t foresee the need for a multilingual feature.

Hitting the Wall
Two large global financial institutions merged. As a result, two IT systems essential to their

business had to merge. The management of the new company determined that a duct-tape

and rubber-band system, mixing the two systems in some kind of chimera, would not work.

They decided to build a support system from scratch, using more recent technologies and, in

some ways, walking away from years of accumulated technical debt in the original systems.

The company organized a team to build the new replacement system. They progressed rapidly

because the first major release was to provide an exact replacement of the existing systems.

In a few months, they accumulated a lot of code that performed well in demos for each one-

week “sprint” (or iteration). But nobody thought about the architecture of the system; everyone

focused on creating more and more features for the demo. Finally, some harder issues of

scalability, data management, distribution of the system, and security began to surface, and

the team discovered that refactoring the mass of code already produced to address these

issues was rapidly leading them to a complete stop. They hit the wall, as marathon runners

would say. They had lots of code but no explicit architecture. In six months, the organization

had accumulated a massive amount of technical debt that brought them to a standstill.

The situation here is very different from the first case. This was not an issue of code
quality. It was an issue of foresight. The development team neglected to consider archi-
tectural and technology selection issues or learn from the two existing systems at

From the Library of Jan Wielemans

ptg47401904

Chapter 1 Friction in Software Development8

appropriate times during development; the team did not need to do all of that up front,
but it needed to do it early enough not to burden the project downstream. Refactoring
is valuable, but it has limits. The development team had to throw away large portions
of the existing code weeks after its original production. Although the organization
hoped to eliminate technical debt when it decided to implement a brand-new system
after the merger, it failed to incorporate eliminating technical debt into the project
management strategy for the new system. Ignorance is bliss—but only for a while.

Crumbling Under the Load
A successful company in the maritime equipment industry successfully evolved its products

for 16 years, in the process amassing 3 million lines of code. Over these 16 years, the

company launched many different products, all under warranty or maintenance contracts;

new technologies evolved; staff turned over; and new competitors entered the industry.

The company’s products were hard to evolve. Small changes or additions led to large

amounts of work in regression testing with the existing products, and much of the testing

had to be done manually, over several days per release. Small changes often broke the

code, for reasons unsuspected by the new members of the development team, because

many of the design and program choices were not documented.

In the case of the maritime equipment company, there was no single cause of techni-
cal debt. There were hundreds of causes: code imperfections, tricks, and worka-
rounds, compounded by no usable documentation and little automated testing.
While the development team dreams of a complete rewrite, the economic situation
does not allow delaying new releases or new products or abandoning support for
older products. Some intermediate strategy must be implemented.

Death by a Thousand Cuts
One IT-service organization landed several major contracts. Some of this new business

allowed the organization to grow its offshore development businesses and enter emerging

software development markets. For several years, the organization experienced a hiring boom.

The IT-service projects were similar in nature, and the organization assumed that its new

developers were interchangeable across projects. The project managers thought, “The task

is customization of the same or similar software, so how different could it be?” But in some

cases, the new employees lacked the right skills or knowledge about the packages used.

In other cases, time and revenue-growth pressures pushed them to skip testing the code

thoroughly or fail to think through their designs. They also did not put in the time to create

common application programming interfaces (APIs). The hiring boom created unstable

teams, with new members introduced almost every month. It even became an internal joke:

“Get a bunch of online Java and Microsoft certifications, and you are a senior developer

here.” In no time, the project managers lost control of the schedule as well as the number of

defects introduced into the system.

From the Library of Jan Wielemans

ptg47401904

Examples of Technical Debt 9

This IT-service organization provides another example in which there is no single
source of technical debt. We call this “death by a thousand cuts” because a pervasive
lack of competence can result in many small, avoidable coding issues that are never
caught. Lack of organizational competency—as in the case of this IT-service organ-
ization—easily activates a number of cascading effects. The unplanned and unman-
aged hiring boom, the missed opportunity to enforce commonality across the
products, and the limited testing all contributed to the accumulating technical debt.

Tactical Investment
A five-person company developed a web application in the urban transportation domain,

targeted at users of buses and trains. In this relatively new and rapidly evolving domain,

the targeted users could not really tell the company what they would need. “I’ll know it

when I see it” was the general response. So, the company developed a “minimum viable

product” (MVP) with some core functionality and little underlying sophistication. Members

of the company beta-tested it with about 100 users in one city. They had to “pivot” several

times until they found their niche, at which point they invested heavily in building the right

infrastructure for a product that would be able to support millions of simultaneous users and

adapt to dozens of situations and cities.

The initial shortcuts that members of this small company took and the high-level
rudimentary infrastructure they initially developed are examples of technical debt
wisely assumed. The company borrowed the time it would have spent on the com-
plete definition and implementation of the infrastructure to deliver early. This
allowed it to complete an MVP months earlier than traditional development prac-
tices, which put the infrastructure first, would have allowed. Moreover, the com-
pany learned useful lessons about the key issues (which did not necessarily match
its initial assumptions) of reliability, fault tolerance, adaptability, and portability.
Building in these quality attributes up front would have created massive rework
once the developers understood more completely what their users needed.

All along, members of this company were aware of the deliberate shortcuts they
were taking and their consequences on future development. From the perspective of
their angel investors, these were good strategies for risk management; if the com-
pany found no traction in the market, the developers could stop development early
and minimize cost before the company made massive financial investments. Man-
agement also made it very clear to everyone, internal and external, that the shortcuts
were temporary solutions so that no one would be tempted to keep them, painfully
patched, as part of the permanent solution. In this manner, taking on technical debt
was a wise investment that paid off. The company repaid the “borrowed time,” but it
could also have walked away from the project.

From the Library of Jan Wielemans

ptg47401904

Chapter 1 Friction in Software Development10

In all these examples, the current state of the software carries code that works, but
it makes further evolutions harder. The debt was induced by lack of foresight, time
constraints, significant changes in requirements, or changes in the business context.

Software Crisis Redux

You have likely seen the symptoms and heard stories of technical debt
similar to those just shared: teams spending almost all of their time fixing
defects and continuously slipping on deadlines for shipping new technol-
ogy; teams discovering incompatibilities despite continuous integration
efforts and spending time on out-of-cycle rework; recurring user complaints
about functionality that appears to be already fixed several times; outdated
technology and platforms requiring convoluted workarounds and present-
ing challenges for upgrading; and a team admitting that the solution it had a
year ago to make the system work is not good enough anymore. For organi-
zations that want to sustain continuous growth and revenue, these are prob-
lems. And for some companies, these problems look like an impending new
software crisis.

Ever since the famous 1969 NATO Software Engineering Conference her-
alded the birth of software engineering, the industry has been in a constant
state of crisis. In his 1972 ACM Turing Award Lecture, the software pioneer
Edsger Dijkstra said, “But in the next decades something completely different
happened: more powerful machines became available, not just an order of
magnitude more powerful, even several orders of magnitude more powerful.
But instead of finding ourselves in the state of eternal bliss of all program-
ming problems solved, we found ourselves up to our necks in the software
crisis! How come?”

The software crisis took root and grew. In 1994 Wayt Gibbs wrote in Sci-
entific American that “despite 50 years of progress, the software industry
remains years—perhaps decades—short of the mature engineering discipline
needed to meet the demands of an information-age society.”

Fast-forward to today. After a series of breathtaking innovations—including
new technologies, new tools, and the software development workforce
increasing tenfold—the software industry is still in crisis. But now the nature
of the issues has shifted. The industry is crushed under the mass of existing
software, which consumes more than half of the available software devel-
opment workforce. Data analysis organizations estimate that the global

From the Library of Jan Wielemans

ptg47401904

Your Own Story About Technical Debt? 11

maintenance backlogs for information technology software amount to $1
trillion of technical debt. Government budgets struggle with legacy code
built on top of poorly designed architectural foundations and outdated tech-
nology. Globally, software practitioners grasp the impact of technical debt
and know how systems acquired their debt but fail to recognize managing
technical debt as an essential aspect of running a successful software organi-
zation and developing successful software-enabled products. The problem is
not new, but the industry is feeling it more acutely now than it has in the past.

Software development is an industry, and it can be sustained as an indus-
trial activity only if it is economically viable. As more and more software is
being developed, its long-term sustainment becomes less and less viable. Mar-
kets demand new applications and systems—and they demand them very rap-
idly. Some of these applications are ephemeral and have shelf lives of a few
months or years, but some—the most successful ones and usually the largest
ones—must be maintained for many years or for decades.

Today this is the biggest hurdle in software engineering: How should a
development organization cope with this rapidly expanding software base
while keeping it secure, running with up-to-date technology, and meeting its
business and user goals in an economically viable way?

 Your Own Story About Technical Debt?

Now that we have given you a taste of the various flavors of technical debt, maybe
you can identify with some of the stories: “Oh, yes, we have some of this here, too!”
or “Now this thing we suffer from has a name: technical debt!” You could add your
own development (or horror) story here. Over the past few years, the authors of this
book have heard similar stories from dozens of companies. These organizations
became mired in technical debt from different paths, with different concerns and dif-
ferent consequences. We have heard enough of these stories to classify them into
awareness levels about technical debt:

 • Level 1: Some companies have told us they had never heard the term or the
concept technical debt, but it was not difficult for them to see that part of their
problem is some form of technical debt.

 • Level 2: Some companies have heard of the concept, have seen blog posts on
the topic, and can provide examples of their technical debt, but they do not

From the Library of Jan Wielemans

ptg47401904

Chapter 1 Friction in Software Development12

know how to move from understanding the concept of technical debt to opera-
tionally managing it in their organization.

 • Level 3: In some organizations, development teams are aware that they have
incurred technical debt, but they do not know how to get the management
or business side of the company to acknowledge its existence or do anything
about it.

 • Level 4: Some organizations know how to make technical debt visible, and
they have some limited team-level strategies to better manage it, but they lack
analytical tools to help them decide what to do about technical debt and which
part of it to address first.

 • Level 5: We have not heard from many organizations that respond, “Thank
you, all the technical debt is under control.” If this describes your organiza-
tion, we would love to hear from you about your successful software product.

This feels a bit like the levels of a “TDMM”—Technical Debt Maturity Model—
doesn’t it? Regardless of the level you feel you’re at, this book has something for you.

Who Is This Book For?

There are many books and tools that can help you understand how to analyze
your software. And there are yet other books that can help you adopt new technol-
ogy for building microservices, migration to the cloud, front-end web develop-
ment, and real-time system development. There are also many good books that
walk through different aspects of software development, such as software code
quality, software design patterns, software architecture, continuous integration,
DevOps, and so on. The list is long. But there exists little practical guidance on
demystifying how to recognize technical debt, how to communicate it, and how to
proactively manage it in a software development organization. This book fills
that gap.

We address the roles involved in managing technical debt in a software develop-
ment organization, from developers and testers to technical leads, architects, user
experience (UX) designers, and business analysts. We also address the relationship of
technical debt to the management of organizations and the business leaders.

People close to the code should understand how technical debt manifests itself,
what form it takes in the code, and the tools and techniques they can use to identify,
inventory, and manage technical debt. This is the inside-out perspective.

People facing the customers—the business side of the organization, such as prod-
uct definition, sales, support, and the C-level executives—should understand how

From the Library of Jan Wielemans

ptg47401904

Principles of Technical Debt Management 13

schedule pressure and changes of direction (product “pivot”) drive the accumulation
of technical debt. They should be especially conscious of how much the organization
should “invest” in technical debt, without repayment, and for how long. This is the
outside-in perspective.

Both sides of the software development organization—technical and code-facing
or business and customer-facing—should understand the reasoning and decision
processes that lead to incurring technical debt and how the consequences of debt
result in reduced capacity. They should also understand the decision processes
involved in paying back technical debt and getting development back on track.
These decisions are not merely technical. For sure, technical debt is embedded
in the code base and a few connected artifacts. But its roots and its consequences
are at the business level. All involved should understand that managing technical
debt requires the business and technical sides of the organization to work together.

Principles of Technical Debt Management

As we progress through the book, we will identify a small number of key software
engineering principles that express universal truths related to technical debt. They
are rooted in our experience with technical debt in industry and government soft-
ware projects, and they are accepted or at least acceptable by the software engineer-
ing community. The nine software engineering principles follow:

Principle 1: Technical debt reifies an abstract concept.
Principle 2: If you do not incur any form of interest, then you probably

do not have actual technical debt.
Principle 3: All systems have technical debt.
Principle 4: Technical debt must trace to the system.
Principle 5: Technical debt is not synonymous with bad quality.
Principle 6: Architecture technical debt has the highest cost of ownership.
Principle 7: All code matters!
Principle 8: Technical debt has no absolute measure—neither for principal

nor interest.
Principle 9: Technical debt depends on the future evolution of the system.

Here is our first principle.

From the Library of Jan Wielemans

ptg47401904

Chapter 1 Friction in Software Development14

We’ll introduce more principles in the following chapters, and you will find them
summarized in the final chapter of the book.

Navigating the Concepts of the Book

The goal for this book is to provide practical information that will jump-start your
ability to manage technical debt. The chapters that follow inform the basic steps of
technical debt management: become aware of the concept, assess the software devel-
opment state for potential causes of technical debt, build a registry of technical debt,
decide what to fix (and what not to fix), and take action during release planning. The

Principle 1: Technical Debt Reifies an Abstract Concept

TECHNICAL DEBT PRACTICE

TD

Technical debt is a useful rhetorical concept for fostering dialogue between
business and technical people in a software development organization. On one
hand, technical people do not always appreciate the value of shorter time to
market, quick delivery, and rapid tactical changes of direction; on the other
hand, business people do not always realize the dramatic impact some earlier
design decisions can make in a software project and the costs they can lead
to downstream. By identifying concrete items of technical debt, considering
their impact over time, evaluating the lifecycle costs associated with them,
and introducing mechanisms for expressing technical debt and estimating its
impact, an organization can help everyone better understand the pains of soft-
ware evolution and make the economic consequences more real and tangible.
Then both technical and business people can plan how to reduce technical debt
just as they plan new features, fix defects, and construct architectural elements.

From the Library of Jan Wielemans

ptg47401904

Navigating the Concepts of the Book 15

steps draw on the seven interrelated concepts shown in Figure 1.1 that are the basis
for managing technical debt.

This book organizes the chapters into four parts.
In Part I, “Exploring the Technical Debt Landscape”—Chapters 1, “Friction in

Software Development,” 2, “What Is Technical Debt?,” and 3, “Moons of Saturn—
The Crucial Role of Context”—we define technical debt and explain what is not
technical debt. We introduce a conceptual model of technical debt and definitions
and principles that we use throughout the book. We want to make technical debt an
objective, tangible thing that can be described, inventoried, classified, and measured.
To do this, we introduce the concept of the technical debt item—a single element of
technical debt—something that can be clearly identified in the code or in some of the
accompanying development artifacts, such as a design document, build script, test
suite, user’s guide, and so on. To keep with the financial metaphor, the cost impact
of a technical debt item is composed of principal and interest. The principal is the
cost savings gained by taking some initial expedient approach or shortcut in devel-
opment—or what it would cost now to develop a different or better solution. The
interest is the cost that adds up as time passes. There is recurring interest: additional
cost incurred by the project in the presence of technical debt due to reduced produc-
tivity, induced defects, loss of quality, and problems with maintainability. And there is
accruing interest: the additional cost of developing new software depending on not-
quite-right code; evolvability is affected. These technical debt items are part of a tech-
nical debt timeline, during which they appear, get processed, and maybe disappear.

In Part II, “Analyzing Technical Debt”—Chapters 4, “Recognizing Technical
Debt,” 5, “Technical Debt and the Source Code,” 6, “Technical Debt and Architec-
ture,” and 7, “Technical Debt and Production”—we cover how to associate with a
technical debt item some useful information that will help you reason about it, assess
it, and make decisions. You will learn how to trace an item to its causes and its conse-
quences. The causes of a technical debt item are the processes, decisions, action, lack
of action, or events that trigger the existence of a technical debt item. The conse-
quences of technical debt items are many: They affect the value of the system and the
cost (past, present, and future), directly or through schedule delays or future loss of
quality. These causes and consequences are not likely to be in the code; they surface

• Technical debt landscape

• Technical debt timeline

• Technical debt item

• Software development artifacts

• Causes and consequences

• Principal and interest

• Opportunity and liability

Figure 1.1 Major concepts of technical debt

From the Library of Jan Wielemans

ptg47401904

Chapter 1 Friction in Software Development16

in the processes and the environment of the project—for example, in the sales or the
cost of support. Then we cover how to recognize technical debt and how technical
debt manifests itself in source code, in the overall architecture of the system, and in
the production infrastructure and delivery process. As you study technical debt more
deeply, you’ll notice that it takes different forms, and your map of the technical debt
territory will expand to include this variety in the technical debt landscape.

In Part III, “Deciding What Technical Debt to Fix”—Chapters 8, “Costing the
Technical Debt,” and 9, “Servicing the Technical Debt”—we cover how to estimate
the cost of technical debt items and decide what to fix. Decision making about the
evolution of the system in most cases is driven by economic considerations, such
as return on investment (for example, how much should you invest in the effort of
software development in a given direction, and for what benefits?). For the technical
debt items, we will consider principal and interest and associate elements of cost to
reveal information about the resources to spend on remediation and the resulting
cost savings of reducing recurring interest. We then revisit the technical debt items in
the registry collectively and use information about the technical debt timeline to help
determine which technical debt items should be paid off or serviced in some other
way to ease the burden of technical debt: eliminate it, reduce it, mitigate it, or avoid
it. We show how to make these decisions about technical debt reduction in the con-
text of a business case that considers risk liability and opportunity cost.

In Part IV, “Managing Technical Debt Tactically and Strategically”—Chapters 10,
“What Causes Technical Debt?,” 11, “Technical Debt Credit Check,” 12, “Avoiding
Unintentional Debt,” and 13, “Living with Your Technical Debt”—we provide guid-
ance on how to manage technical debt. A key aspect of a successful technical debt man-
agement strategy is to recognize the causes in order to prevent future occurrences of
technical debt items. Causes can be many, and they can be related to the business, the
development process, how the team is organized, or the context of the project, to list a
few. We present the Technical Debt Credit Check, which will help identify root causes
of technical debt that show the need for software engineering practices that any team
should incorporate into its software development activities to minimize the introduc-
tion of unintentional technical debt. The principles and practices you will have learned
along the way make up a technical debt toolbox to assist you in managing technical debt.

At the end of each chapter, we recommend activities that you can do today and
further reading related to the concepts, techniques, and ideas we discuss.

What Can You Do Today?

Apply the first principal by putting a name to your technical debt. Commit to apply-
ing a few basic techniques to your normal development practices as you read each
chapter and continue to improve over time.

From the Library of Jan Wielemans

ptg47401904

For Further Reading 17

For Further Reading

The seminal paper that brought us the debt metaphor is the often-cited OOPSLA
1992 experience report, “The WyCash Portfolio Management System,” by Ward
Cunningham.

Steve McConnell (2007) provided one of the simplest and most accessible definitions
of technical debt: “a design or construction approach that is expedient in the short term
but that creates a technical context in which the same work will cost more to do later
than it would cost to do now.” Our current definition of technical debt was devised in a
week-long workshop in Dagstuhl, Germany, in April 2016 (Avgeriou et al. 2016).

The software crisis was well described in 1994 by Wayt Gibbs, who interviewed
many software pioneers and practitioners in industrial organizations, including
Larry Druffel, Vic Basili, Brad Cox, and Bill Curtis.

A must-read is Fred Brooks’ “No Silver Bullet” paper (Brooks 1986), which is also
a chapter in the 10th anniversary edition of his famous book The Mythical Man-
Month (Brooks 1995). Brooks reminds us that “There is no single development,
in either technology or management technique, which by itself promises even one
order-of-magnitude improvement within a decade in productivity, in reliability, in
simplicity.”

A durable software engineering principle should be a simple statement that
expresses some universal truth; is “actionable” (that is, worded in a prescriptive man-
ner); is independent of specific tools or tool vendors, techniques, or practices; can
be tested in practice, where we can observe its consequences; and does not merely
express a compromise between two alternatives. There are two classic books on soft-
ware engineering principles: 201 Principles of Software Development by Alan M.
Davis (1995) and Facts and Fallacies of Software Engineering by Robert L. Glass
(2003). In “Agile Principles as Software Engineering Principles,” Norman Séguin
(2012) did a thorough analysis of what constitutes a good software engineering prin-
ciple—as opposed to a mere aphorism, wish, or platitude—and he debunked a few
myths about principles.

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

19

Chapter 2

What Is Technical Debt?

Drawing from a financial metaphor, the concept of technical debt shifts the
conversation about decision making from a technical standpoint or an economic
standpoint to a place where developers and managers can better understand the
trade-offs and compromises in software development and decide on the way
forward. In this chapter, we describe the technical debt landscape through the
forms technical debt takes in different types of development artifacts across the
software development lifecycle. We explore more thoroughly the concept of a
technical debt item and its causes and economic consequences as principal and
interest. We introduce the technical debt timeline to help you understand how
technical debt unfolds over time.

Mapping the Territory

In Chapter 1, “Friction in Software Development,” we defined technical debt in
software-intensive systems as the “design or implementation constructs that are
expedient in the short term but that set up a technical context that can make a future
change more costly or impossible.” We added that “technical debt is a contingent
liability whose impact is limited to internal system qualities—primarily, but not
only, maintainability and evolvability.”

Technical debt is mostly invisible when looking at or using a software product.
It manifests in two main ways: difficulty and additional cost in evolving the system
(that is, adding new functionality) or maintaining the system (that is, keeping the
system running when the technical environment changes). But concretely, opening
the box and looking at technical debt at the software level reveals that it takes many
different forms.

From the Library of Jan Wielemans

ptg47401904

Chapter 2 What Is Technical Debt?20

In this chapter, we survey the software development landscape with respect to
technical debt and then dig a bit deeper into the technical and economic implications
of this definition.

The Technical Debt Landscape

Figure 2.1 illustrates a typical technical debt landscape showing the software devel-
opment issues that developers work on to improve the system. We distinguish the
visible issues, such as new feature requests and defects that need to be fixed, from
the mostly invisible issues, which are visible only to software developers. Issues
related to evolution appear primarily on the left side of the figure; issues related to
maintenance and quality appear primarily on the right.

Our focus is on the mostly invisible aspects of evolution and maintenance. Tech-
nical debt takes different forms in different types of development artifacts, such as
the code, the architecture, and the production infrastructure. The different forms of
technical debt affect the system in different ways.

The source code embodies many design and programming decisions. The code
can be subjected to review, inspection, and analysis with static checkers to find issues
of finer granularity: violations of coding standards, bad naming, code clones, unnec-
essary code complexity, and misleading or incorrect comments. Many of these symp-
toms of technical debt are referred to as code smells. When a system incurs technical
debt at the source code level, the debt tends to hinder maintainability so that it will
be hard to make corrections to the system when needed.

Mostly Invisible

EVOLVABILITY MAINTAINABILITY

New Features

Te
c

h
n

o
lo

g
ic

a
l G

a
p

Production Infrastructure

Architecture
Architecture Smells

Pattern Violations

Structural Complexity

Code
Code Complexity

Code Smells

Coding Style Violations

Low Internal Quality

Build, Test, and Deploy Issues

Additional Functionality

Defects

Low External Quality

VisibleVisible

Figure 2.1 The technical debt landscape

From the Library of Jan Wielemans

ptg47401904

The Technical Debt Landscape 21

Other technical debt items are more encompassing and pervasive. They involve
choices about the structure or the architecture of the system: choice of platform,
middleware, technologies for communication, user interface, or data persistency.
Static code checkers don’t find technical debt caused by these types of choices. For
these elements, the principal and the interest are often higher than for technical
debt in the code. When a system incurs technical debt at the architectural level, the
debt tends to hinder evolvability: The system will be hard to extend to new features,
with their functional and quality attribute requirements, such as scaling to a larger
number of users, processing different kinds of data, and the like.

Not all technical debt is associated with bad internal quality. Technical debt
incurred by the passage of time and the evolution of the surrounding environment is
not the result of bad quality. Your system could have had the best possible design (or
code) at the time you built it; five years later, it is deep in technical debt because of
changes in your environment—not because the system has degraded. A technologi-
cal gap has grown between the original state and the current environment. For exam-
ple, perhaps you picked AngularJS as your front-end web application framework,
but starting with the most recent release, the release documentation announces that
AngularJS will not continue to support Internet Explorer. You ignore this version
incompatibility for a number of releases, focusing on implementing other function-
ality, until you discover that the number of customers using Internet Explorer was
not as small as you initially thought. You incurred debt just because time passed and
you didn’t revisit your initial choice, not because you took a shortcut in that initial
choice.

Finally, some technical debt items are associated not with the code of the prod-
uct but with the code of other closely related artifacts in software production: build
scripts, test suites, or deployment infrastructure.

The constant characteristic across this landscape of technical debt is its invisibility.
Technical debt is not visible outside the system’s development organization; it is
mostly invisible to customers, purchasers, and end users. These parties observe the
systems. They are affected by a reduced ability of the development organization to
evolve or maintain the software product and, in more dramatic cases, a degrada-
tion in the overall quality. In the financial world, you drive the BMW, and there is no
observable evidence that you still owe 50% of it to your bank. In software develop-
ment, end users use your software without knowing how much technical debt your
organization owes on the product.

Some developers (and tool vendors and researchers) argue that defects—or any
other form of visible low external quality—are technical debt. Some development
teams even argue that unimplemented requirements are technical debt. We think
that this makes technical debt too vast a category, rendering it a more or less useless
 concept. Defects and low external quality—such as poor performance, a cumbersome

From the Library of Jan Wielemans

ptg47401904

Chapter 2 What Is Technical Debt?22

user interface, instability, and security holes—are not technical debt. They are just
poor external quality; the system is not operating properly, and its problems must
be addressed. However, the poor quality may be a consequence of technical debt.
Software practitioners already know how to track and manage defects and unim-
plemented requirements. Technical debt refers to a class of issues not historically
tracked or managed that represent the trade-offs among technical decisions and their
changing consequences as the system grows.

As explained in later chapters, defects, new requirements, and technical debt
must all be considered when planning upcoming work because all three compete for
resources during software development. They all require the effort of the development
organization and contribute in different ways to the value of the software product.
But for now we limit our attention to what is inside the technical debt landscape.

Technical Debt Items: Artifacts, Causes, and
Consequences

All software-intensive systems, regardless of their domain or size, suffer from some
form of technical debt that negatively affects their evolution if it is not managed in a
timely manner. This technical debt is not atomic or monolithic, but it can be decom-
posed into dozens or hundreds of items, which we call technical debt items, that
accumulate over time.

A technical debt item is associated with the current state of a development
artifact: a piece of code, build script, or test. It is a concrete development artifact
that you can point to. What connects this item to technical debt is that the state
of the artifact makes further changes to the software system more difficult: Evolv-
ing the software system is slower, more costly, more error-prone, riskier, or even
impossible. Technical debt adds some kind of friction to further development,
making it harder. In practical terms, how do you manage technical debt items?
They can be mapped to entries in the same tool you use to manage your backlog,
or they can be mapped to your issue tracker.

Technical debt is a state of your software system, and it has multiple causes and
multiple consequences. Each technical debt item has one or more causes. The most
likely cause we have observed is schedule pressure. A development team takes a path
that is expedient now to save time and effort and, very often, because of some immi-
nent delivery deadline. But there are other reasons to take on technical debt, as the
stories in Chapter 1 illustrate. For example, you may want to investigate a possible
product solution with minimal initial investment. Or the developer may not know a
better approach at that point. While most technical debt can be traced to some decision
made by the development organization, consciously or not, other causes are not linked

From the Library of Jan Wielemans

ptg47401904

Technical Debt Items: Artifacts, Causes, and Consequences 23

to any decision made by developers or anyone from the business side. Some technical
debt is caused by changes that occur outside the system, when some other element
evolved in such a way that your system now suffers from technical debt; your software
system has aged. We will look more closely at this “technological gap” in Chapters 6,
“Technical Debt and Architecture,” and 10, “What Causes Technical Debt?”

Be careful not to confuse technical debt with the cause of that technical debt. The
necessity of meeting a hard deadline is not technical debt. But that necessity may
lead you to make an expedient choice that changes the state of an artifact. Or you
may miss a deadline because the current technical debt slows you down, and this is a
consequence of technical debt.

The consequence of most technical debt is the additional costs that the develop-
ment organization will potentially incur in the future. “Let us do <this> now, and
we’ll decide later if we can afford to do <it> better.” Essentially, the debt is not
borrowed money but borrowed time—or, more precisely, borrowed effort—which
the organization can translate into monetary terms. These additional costs do not
always appear clearly associated with specific technical debt items. Instead, they
manifest in the form of reduced velocity (or productivity), longer release cycles, or
even their effect on the development team’s morale.

Technical debt, however, may have consequences other than costly future devel-
opment; it may also manifest in more defects, by making the evolution of the sys-
tem more error prone for other developers. For example, if the technical debt takes
the form of missing documentation or code that is hard to read or overly complex,
a developer might make changes to this code and introduce a bug inadvertently.
In turn, this bug may have some impact on the value of the software and lead to
future remediation costs.

Often, these consequences—unintended development, lower productivity, and
system fragility—are first visible only to the development team. They are the
externally visible symptoms of technical debt. By themselves, symptoms are not
complete technical debt items, although some development teams and software
managers mistakenly refer to them as technical debt. They require some deeper
investigation to identify the actual state of the related development artifacts, as we
will show in Chapters 4, “Recognizing Technical Debt,” 5, “Technical Debt and
the Source Code,” 6, “Technical Debt and Architecture,” and 7, “Technical Debt
and Production.” Using another analogy, if technical debt were a health issue, then
stomach ache, coughing, or high body temperature would be the consequences,
also called symptoms, while eating contaminated food or sitting next to someone
who is ill on a packed six-hour flight would be possible causes. Relieving the symp-
toms, such as taking a fever reducer, often does not resolve the issue. To get the
complete picture, it is necessary to determine the state of the lungs or the stomach
to effectively diagnose the illness and treat the patient.

From the Library of Jan Wielemans

ptg47401904

Chapter 2 What Is Technical Debt?24

Principal and Interest

Using our metaphor of financial debt, such as the mortgage on a house, financial
consequences can be articulated in terms of principal and interest. The principal
associated with a technical debt item is proportional to the effort that a development
team would expend to eliminate it. Similarly, the interest incurred by this technical
debt item is the effort expended in additional development if the team leaves the
technical debt in the system. Moreover, both the principal and the interest grow over
time, as more development that depends on the related development artifact is done,
which ultimately makes paying off the debt more and more expensive.

Let us illustrate these concepts with a simple example.

Step 1: Incurring Some Initial Debt

You need to implement a new feature, inventory management, in your system and
the underlying software stack. You can choose one of two design strategies:

 • Design option U: A home-brewed stack based on the MEAN stack (Mongo
DB, Explore.js, Angular.js, Node.js), which is expedient but not quite extensi-
ble; it has a low cost, say, six person-days.

 • Design option V: A commercial middleware product, which is a much better
design and is extensible and elegant; it has a higher cost, at ten person-days.

U
V

Solution U is cheaper than V

Note

The size of the box indicates development cost: The larger the box, the more effort
in its development.

From the Library of Jan Wielemans

ptg47401904

Principal and Interest 25

Because of schedule pressure, you choose the home-brewed stack, design option U,
for the first release. Your home-brewed stack is not “buggy,” and your inventory
 management feature will work perfectly well in either option.

Step 2: Evolving the System and Facing the Debt

For the second release, you want to implement a new feature, an order entry func-
tion, which depends on inventory management and therefore on U. Let us call the
implementation of this order entry feature W.

Implementing order entry, W, on top of the quick-and-dirty home-brewed stack,
U, is costly: W/U. It is more costly than it would have been if you had chosen the
middleware product option, V, in the first place: W/V.

So, the code associated with the home-brewed stack, U, has incurred some techni-
cal debt. The interest you pay on this technical debt is the additional effort it now
takes you to implement the new feature on top of U, relative to implementing it on
top of the middleware product, V.

U

W/V

V

W/U

W over V is cheaper than W over U

Step 3: Deciding How to Treat the Debt

You now have another choice:

 • You can repay the debt by discarding U and implementing the commercial
solution V. Since U cannot be refactored, this choice involves paying the full
price for V: the original principal that was the cost savings plus the cost of
replacing U. By choosing this option, you avoid incurring any interest on new
features developed on it.

 • Or you can decide to implement the order entry feature W on top of U, with
interest.

From the Library of Jan Wielemans

ptg47401904

Chapter 2 What Is Technical Debt?26

Your choice will likely be driven by immediate considerations of cost and sched-
ule pressure and how much of each is involved. The interest—the additional cost of
implementing W on top of U—is small compared to the cost of replacing the home-
brewed solution U with the commercial middleware solution V and is not offset by
the lower cost of implementing new features, such as order entry W on top of V.

If replacing U with V costs ten person-days, but the difference between imple-
menting W on top of U instead of V is only one person-day, you may be tempted to
choose the cheaper option: Accept the interest and postpone the decision to change
U into V to some later day.

VU

W/U

Interest

U

Principal

Pay interest, or repay the principal

W/V

REPAY

Step 4: Just Paying Interest

If you do not repay the principal, your technical debt will continue to accrue as you
add new features, implemented by X, as shown in the next figure. You have not added
a new technical debt item, but you have made the current item more costly. At some
later time, if you decide to replace the quick U with the nicer V, you will also have to
retrofit W/U and X/U to make W/V and X/V; in other words, your implementation
of each feature—W, X, and any others—on top of U would also have to be adjusted
to the better V. The cost associated with moving from U to V therefore increases
(principal* in the figure).

Interest is one of the key concepts of technical debt. In fact, understanding how
and when interest accumulates in technical choices helps determine whether an issue
should be managed as a technical debt item. Sometimes for good reason you choose
to accept the interest. But often this choice is not conscious, and development costs
increase. Managing such issues as technical debt items will increase their visibility so
you can better assess the consequences and make informed decisions about the time
and effort for treating the debt.

From the Library of Jan Wielemans

ptg47401904

Cost and Value 27

VU

W/U W/V

U

X/VX/U

Interest

Principal*

W/U

Principal*

Pay more interest, or repay the higher principal

REPAY

REPAY

Cost and Value

Our description of technical debt so far has revolved around the costs, expressed as
principal and interest. But like financial debt, technical debt has some value. You
gain value in taking a mortgage to finance a home: You can enjoy the home now
rather than wait until you are 60 years old to afford one. Similarly, software projects
take on technical debt, consciously or not, because doing so creates some immediate
value. And as in all other economic endeavors, there are trade-offs to be made. Cost
must be constrained and value maximized.

Although we think of both value and cost in monetary terms—dollars, euros, or
yen—they are different, and we will be careful not to confuse them.

Cost means any development costs: what it takes to get a system into the hands of
its end users. For software-intensive systems, cost is primarily driven by compensat-
ing software developers. To estimate the cost of software developers, you must be
able to estimate the amount of time they will spend developing. The cost comes in
two forms:

 • Recurring interest: The cost of the constant additional, possibly also growing,
effort incurred because of the technical debt whenever the system must evolve.

 • Principal and accrued interest: The cost of changing the design and the cost
of retrofitting the dependent parts (the workarounds) in order to repay the
debt.

From the Library of Jan Wielemans

ptg47401904

Chapter 2 What Is Technical Debt?28

A way to illustrate the difference between recurring interest and accruing interest
is to look at a typical credit card statement:

Credit Card Cost
Analogue in Software
Development

Principal (at start
of month)

$1,000.00 Current remediation cost

Interest for the
month

$50.00 Accruing interest (coding a
workaround)

Financial charge $35.00 Recurring interest
(slowdown of the team)

Balance due $1,085.00

The interest for the month corresponds to accruing interest; it is added to the
principal as an obligation to pay in the future. The monthly financial charge of $35
corresponds to recurring interest; you pay it whenever your balance is not zero (a fea-
ture of credit cards in North America that you may not have experienced elsewhere!).
Let’s assume that you pay only this financial charge and do not repay the principal.
The next statement will show the following balance:

Credit Card Cost
Analogue in Software
Development

Principal (at start
of month)

$1,050.00 Remediation cost going up
(accruing)

Interest for the
month

$52.50 Retrofitting the
workarounds

Financial charge $35.00 Still slowing down general
progress

Balance due $1,137.50

If you continue to defer payment, at the end of the year you will have paid $35 per
month, for a total of $420 in financial charges, and the principal will have grown to
$1,795.86 due to interest compounding monthly.

Where the analogy breaks a bit is that in software development, the interest is
not a defined percentage of the principal. You may not accrue interest all the time;
you may have only recurring interest. The principal may change for various reasons,

From the Library of Jan Wielemans

ptg47401904

Cost and Value 29

and it may not be the principal incurred at the beginning. Other slight breaks in the
analogy include the debt incurred by the passing of time that we described above,
although you could think of it as not maintaining the cedar shingle roof of your
house: It was perfect when you built it, but 15 years later, it has decayed and must be
rebuilt.

Value is what the business draws as profit from selling the software, or the value
perceived by the end users or the acquirers of the system. Value is even more diffi-
cult to estimate and forecast than cost. The accounting department can only tell you
about the actual value of sales so far.

When you evaluate, assess, and decide what to do about technical debt, you must
deal with forecasting. Forecasting is difficult because it requires comparing different
scenarios about the future, with different values and costs associated with them. One
method for getting past the question of whether you are including the right details
in your estimation is to use some proxy for monetary value. Many software devel-
opment processes and organizations use points for cost: function points, use-case
points, story points, and similar terms. There is no well-established proxy for value.

Let us revisit our simple example, this time to look at both cost and value.
Whether you choose the quick-and-dirty U or the more elaborate V in the first
release, the value of delivering a feature implemented with W in the second release is
the same. But using design option U is cheaper. Remember that technical debt is not
an externally visible defect, so the end user has received the same value at this point,
regardless of the cost.

In the next release, you add the new feature, X. The total value delivered is the
same whether you use design option U or V. But again, the cost with V is less than the
cost with U.

To optimize value for a given cost over time through multiple releases, you should
have chosen the more complex V. However, there is more to value than what fea-
tures are delivered. Value is also influenced by when they are delivered. On one hand,
choosing V would have delayed the initial delivery of W, potentially reducing its mar-
ket value. But the investment in V would have reduced the recurring interest in add-
ing a new feature as the system evolves. On the other hand, the value of incurring
technical debt by choosing U is the time you gain by delivering additional value early.
This is a valuable use of debt—that is, an investment resulting from understanding
the business trade-offs and actively managing the technology roadmap—if the soft-
ware development endeavor is highly risky and if you are ready to walk away from
the system, never implementing feature X.

From the Library of Jan Wielemans

ptg47401904

Chapter 2 What Is Technical Debt?30

The Installment Plan
by Ben Northrop

There are often many options for paying down financial debt, and this is the
case for technical debt as well. Though we might like to pay off each loan (or
technical debt item) in its entirety, given the constraints, risks, and context of
the project, it’s often more practical to pay it off in installments.

A few years back, I was working on a kiosk application for a food service
client. The system supported a number of features, from browsing the menu
to calculating nutrition facts, but the main function was to allow hungry
and time-conscious customers to place their orders quickly. This efficiency
 component was crucial, so the overriding design philosophy was to keep the
user interaction as quick and easy as possible—so the customer would need
only tap and swipe, never type.

Well, philosophies are made to be broken. About a year into the project,
it was determined that a little typing was needed after all. Power customers
would like to be able to log in to the kiosk to see their favorite orders and
receive personalized recommendations, and until fancy QR code readers
could be installed for instant authentication (à la Starbucks), we would need
to implement a simple email/password login screen. We were assured, how-
ever, that this feature was a one-time thing, and it would be the only typing
interaction we’d need to support.

With marching orders in hand, off we went to implement a virtual, on-
screen keyboard for our new login feature. And trusting in the assurance
that this typing feature was an anomaly, we happily embedded the code for
the virtual keyboard right into the login screen. It was quick and dirty but
effective.

Of course, a few months later, things changed. Focus groups showed
that customers who had not originally logged in might still want the ability
to enter their email address after the order process, so, as we should have
expected, we were now tasked with supporting a second instance of typ-
ing via the virtual keyboard. Had we initially implemented the keyboard
generically (for example, abstracted it into some common widget), then
reuse would have been a snap. Instead, our code was tightly bound into the
login screen, and the solution would not be so easy. To further complicate
the matter, we were in the final sprint of our release cycle, and capacity was
stretched thin.

From the Library of Jan Wielemans

ptg47401904

Cost and Value 31

The decision before us was clear: Either we could go back and extract the
virtual keyboard into a common component (as perhaps we should have done
in the first place!), and incur the extra cost associated with the code refactoring
and extra testing. Or we could take the easy road and simply copy and paste
the original virtual keyboard code and embed it again into the feature code,
this time the email entry screen. With the clock ticking, we took out a loan.

In the following months, our decision proved sound. We not only made
our deadline but also found that the debt was manageable. Sure, there were a
few minor defects or style enhancements in the virtual keyboard that required
duplicate fixes, but overall the interest payments were low, and we were aware
of the debt we would need to later pay (that is, it was on our backlog).

A few months later, however, a third requirement came for typing into our
kiosk. At this point, we knew we did not want to increase the size of our debt
by taking the copy/paste route again, but with a recently reduced team, we
also knew we did not have the ability to pay down the entire principal in a sin-
gle sprint. Was there a way we could avoid getting ourselves into more debt but
also not pay off our loan in its entirety?

Our approach was to pay down our debt in installments. We recognized
that the virtual keyboard was composed of three pieces: the style (CSS), the
template (HTML), and the controller logic (JavaScript). Further, it was clear
from the past few months of maintenance that the majority of changes were
isolated to the look and feel and that the logic was generally stable.

Given all this, we decided to pay our debt in three chunks. In the first sprint, we
extracted the CSS classes into our common stylesheet but left the duplicate tem-
plate and controller logic in place. A sprint later, we tackled the template code,
pulling it out into a reusable HTML snippet. In the third sprint, we abstracted a
few of the nontrivial blocks of logic in the controllers into a common JavaScript
library, and then we were done. In the end, this was not the purest design, and it
was certainly not what we would have created if we had had perfect knowledge
from the start, but it was pragmatic. In three smaller debt payments, we were
able to consolidate about 80% of the solution, leaving only a very tiny debt of
duplicated code that we were comfortable never paying off.

The point is that for any particular technical debt item, there is often a
spectrum of options between the obvious poles of “do nothing” and “pay it all
off.” For us, though, either would have been a less-than-perfect end solution,
and paying a technical debt in installments was a practical way to meet the
demands of the business and also keep our technical debt under control.

From the Library of Jan Wielemans

ptg47401904

Chapter 2 What Is Technical Debt?32

Potential Debt versus Actual Debt

Not all technical debt items have the same impact. Whether an issue is actual techni-
cal debt or not depends on what future evolution a development team wants to make
to the software system. If a technical debt item resides in a part of the code that is
not affected by a future evolution, then this technical debt item is only potential debt.
When it affects the evolution, it becomes actual debt.

The financial analogy again helps make this relationship to time and evolution
concrete. If you borrow money from a bank with 0% interest initially, it is like free
money; it is not incurring additional cost to you. Likely you will plan to repay it
before the interest rate switches on. But until then, you may use the borrowed money
for other purposes. You have the debt, but you have not started seeing its impact.
This brings us to our second principle.

Principle 2: If You Do Not Incur Any Form of Interest, Then You
Probably Do Not Have Actual Technical Debt

TD

TD

TD

TD

TD

We use this principle as a litmus test when we classify an issue as actual tech-
nical debt or not. This gets tricky as the business and the technical context of
your system changes; the likelihood of interest accumulating on design choices
may change as well. For example, an area of the system with an abundance of
problems may currently have zero interest if it is sufficiently decoupled from the
rest of the system and does not need to be maintained. Understanding interest
and how it changes is key to understanding and managing your technical debt.
The amount of interest is not linear and fluctuates as systems evolve. Hence
managing technical debt is not a one-time activity.

From the Library of Jan Wielemans

ptg47401904

The Technical Debt Timeline 33

A system may have a very large potential debt, but at a given point in time, based
on the next evolution increment, only a small part of this technical debt is actual
debt. This distinction will drive our prioritization of technical debt remediation
(or repayment). We focus mostly on actual debt first, and next on potential debt,
depending on its likelihood of occurrence.

The Technical Debt Timeline

As you have realized by now from our description of technical debt, time plays a big
role: Technical debt matters only as time flows and the software system evolves.
If the system were to never evolve, you would never have to pay any interest, and
therefore technical debt would not matter. Let us look at the technical debt timeline,
which shows how technical debt unfolds over time (see Figure 2.2).

Time

Occurrence Awareness Tipping Point Remediation

T1 T2 T3 T4

BLISSFUL IGNORANCE SUFFERING FROM DEBT DEBT-FREE

GETTING VALUE OUT OF DEBT

Technical Debt Net Liability

Technical Debt Net Asset
TECHNICAL DEBT

Figure 2.2 Technical debt timeline

T1: Occurrence

Occurrence is the point in time when a technical debt item is introduced into the sys-
tem, for whatever good or bad reasons.

T2: Awareness

Awareness is when the development organization sees the symptoms of the technical
debt item. For technical debt that was incurred intentionally, through a deliberate
decision and for some clear immediate benefit, T2 = T1. A development team made
an explicit decision and records it. But for many development projects, lots of techni-
cal debt items just happen, unintentionally, and they will be discovered only later,
when symptoms of slow development or defects point to strange workarounds, “fix
me” comments, or “todo” labels in the code. The period between T1 and T2 is bliss-
ful ignorance.

From the Library of Jan Wielemans

ptg47401904

Chapter 2 What Is Technical Debt?34

T3: Tipping Point

The tipping point is the time when the cost of having technical debt starts to over-
come the original value of incurring the debt. In the interval from T1 to T3, the slower
progress due to recurring interest and the accruing interest of not-quite-right code
that will need to be retrofitted lead to a situation where you could be better off repay-
ing the debt. Before T3, you might just as well live with it; you actually get some value
from the technical debt. T3 is an inflection point: you now pay more than you gain.

T4: Remediation

Remediation is removing the technical debt item from the system. The cost of reme-
diation includes the initial principal and all the accrued interest. In the period from
T3 to T4, the debt continues to accumulate interest. But also (unlike in the financial
world), the principal may evolve to be very different from the initial principal. So, the
remediation will often be more effort than just undoing the not-quite-right code and
implementing what would have been the right solution at T1. The remediation might
lead to a very different design from the one you forfeited at T1 because the context
has evolved significantly. After T4, you stop paying the recurring interest, too.

…Or No Remediation

The remediation step at T4 may not be chosen. If the tipping point T3 is far in the
future, the remediation costs may be prohibitive, so you postpone the decision fur-
ther into the future. Therefore, there may be a period from T2 onward during which
you just live with the technical debt and accept to pay any recurring interest as you
go. This is likely to be the case when the technical debt item is confined to a part of
the source code that is unlikely to evolve in the future, so it will have very minimal
recurring interest and no accruing interest.

Technical debt-savvy organizations may not wait to hit the tipping point at T3
and instead start remediation early.

In the following chapters, we will tackle key planning questions:

 • Is incurring debt worthwhile?

 • Once you have technical debt, when should you repay it?

 • If you cannot afford to repay it all, which parts of it should you prioritize?

Software development organizations usually operate within budgets that con-
strain the costs. They try to optimize the delivered value at each step or release, and

From the Library of Jan Wielemans

ptg47401904

For Further Reading 35

when they decide what to do at each step, they face competing demands on their
budget, including adding new features, scaling up the system, increasing quality (in
particular by reducing defects), and reducing technical debt. They need to estimate
both cost and value for these competing demands.

What Can You Do Today?

The processes of developing, evolving, and sustaining software systems require mak-
ing technical, organizational, social, and business trade-offs. The more these trade-
offs are made explicitly and communicated broadly, the more likely resources will be
allocated strategically. Start today by understanding the rich vocabulary of technical
debt and socializing the concept with the key stakeholders of the system:

 • Provide a clear, simple definition of technical debt in the context of your
project.

 • Educate the team about technical debt.

 • Educate the people in the immediate project environment about technical debt:
management, analysts, product managers.

 • Create a “techdebt” category in your issue tracking system, distinct from
defects or new features.

 • Include known technical debt as part of your long-term technology roadmaps.

 • Extend awareness activities to external contractors if they are part of the
project.

As you learn more about different technical debt management principles and
practices in the following chapters, you will fill a toolbox that will equip you to deal
with conversations about trade-offs and managing your technical debt strategically
rather than being overrun by it.

For Further Reading

Steve McConnell (2007) of Construx was the first to establish a classification (or
taxonomy) of technical debt, differentiating small, scattered, and mostly uninten-
tional debt from large, intentional, and strategic debt. Martin Fowler (2003) of
ThoughtWorks presented a different twist on the taxonomy, highlighting the
“prudent but inadvertent debt” caused over time by an evolving environment.

From the Library of Jan Wielemans

ptg47401904

Chapter 2 What Is Technical Debt?36

Steve Freeman and Chris Matt (2014) have argued that traditional financial debt is
not the best metaphor; software technical debt is more like an unhedged call option
in the derivatives financial markets. The buyer pays a premium to decide later if he
or she wants to buy. The seller collects the premium and will have to sell if the buyer
decides to buy. It is not predictable for the seller. When you incur the technical debt,
you collect the premium: You immediately get benefit from it (shorted time). But as
soon as you have to maintain or evolve this codebase, the option is called, and you
have to pay an unpredictable amount of effort to achieve your new objectives.

The technical debt landscape emerged as the result of a workshop held at the Inter-
national Conference on Software Engineering (ICSE) in Zürich in 2012 (Kruchten
et al. 2012). The principles of technical debt came out of the workshop at ICSE 2013
in San Francisco (Kruchten et al. 2013).

From the Library of Jan Wielemans

ptg47401904

37

Chapter 3

Moons of Saturn—The
Crucial Role of Context

In this chapter, we introduce three case studies that we’ll use throughout the book to
illustrate the main concepts of technical debt and the strategies for managing it. All
long-lived software-intensive systems have to deal with technical debt within their
context. The interactions and specifics of the many factors of context help develop-
ment organizations understand the systems and navigate the causes and conse-
quences of the debt.

“It Depends…”

When asking questions about software development practices, how often have you
heard the reply, “it depends”? This is not just a way to dismiss the question. There are
no all-inclusive answers, universally applicable techniques, or standard recipes. The
answer really does depend on a number of factors that describe the context of the
system. Eight of these factors are shown in Figure 3.1.

Team

distribution

Business

model

Architecture

Rate of

change

CONTEXT

Size

Age of

system

Criticality

Governance

Figure 3.1 “It depends”: The many factors of context

From the Library of Jan Wielemans

ptg47401904

Chapter 3 Moons of Saturn—The Crucial Role of Context38

 • Size: The size of the system is by far the greatest factor because it drives the
size of the team, the number of teams, the need for communication and coor-
dination between teams, the impact of change, and more. The number of
 person-months, the size of the code, and the development budget are all pos-
sible proxies for size. Size is often related to complexity. The larger the system,
the more technical debt it can accumulate.

 • Architecture: Is there a de facto architecture in place at the start of the project?
Most projects are not novel enough to require a lot of architectural effort. They
follow commonly accepted patterns in their domains. Many key architectural
decisions are made in the first few days of development, such as choices related
to middleware, operating systems, and programming languages. These choices
may be based on what the developers are familiar with and their gut feelings
rather than a careful analysis of long-term system consequences. We will show
in Chapter 6, “Technical Debt and Architecture,” that technical debt at the
architectural level is difficult to identify and very costly to repay.

 • Business model: What is the money flow? How is the project funded? Are
you developing an internal system, a commercial product, a bespoke system
on contract for a customer, or a component of a large system involving many
different parties? Is it free/libre open-source software (FLOSS)? Financial con-
siderations are a key factor in incurring technical debt or deciding to remediate
technical debt.

 • Team distribution: Team distribution is often linked to the size of a project.
How many teams are involved and collocated? Distributed teams increase the
need for explicit communication and coordination of decisions as well as stable
interfaces between the software components that they are responsible for.
Communication issues and organizational silos contribute to the accumulation
of technical debt, especially at the architectural level.

 • Rate of change: Though agile methods are all for embracing change, not all
systems experience a rapid pace of change in their environment. Many projects
have very stable requirements definitions. How stable is your business environ-
ment, and how many risks and unknowns are you facing? The volatility of the
requirements will increase the propensity of the team to incur technical debt.

 • Age of system: Technical debt has more opportunities to accrue on large and
long-lived systems. These legacy systems carry hidden assumptions about
their architecture, and evolving them can reveal technical debt. Constraints
accrue in legacy systems, often causing another source of technical debt.
Alternatively, creating a new system, with fewer constraints, can proceed with-
out taking on a lot of debt.

From the Library of Jan Wielemans

ptg47401904

Three Case Studies: Moons of Saturn 39

 • Criticality: How many people die or are hurt if the system fails? For safety-
critical and mission-critical systems, documentation needs increase dramati-
cally to satisfy external agencies that want to assure the safety of the public.
More formal verification and validation techniques may be essential to ensure
that a system behaves the way it should. Such systems often struggle with
how to modernize hardware or software that can be a major source of debt—
whether it is legacy hardware or some arcane software that implements a crit-
ical algorithm.

 • Governance: How are critical decisions made? How are projects steered?
How do projects begin and end? Who decides what to do when things go
wrong? How is success or failure defined? Who manages the software pro-
ject managers? Tension or lack of communication between a project and the
management structure may cause technical debt accumulation, as discussed
in Chapter 10, “What Causes Technical Debt?”

Other factors can change the context of the software development process,
but they have more indirect effects on it. They mostly shape the eight factors just
described. Some of these other factors are domain, process maturity, corporate
 culture, degree of innovation, and economic imperatives.

These factors combine in many different ways to create the context in which
development organizations must plan their approach to technical debt. An old
and large company might have mostly large projects, a significant level of govern-
ance, proprietary code, a stable architecture, large globally distributed teams, and a
medium rate of change. A small startup might have a small codebase, an unstable or
still fluid architecture, low criticality, a high rate of change, and a collocated team.

Three Case Studies: Moons of Saturn

We now introduce three example projects, laden with different types of technical
debt and facing different kinds of tactical choices. We will use the context factors to
describe these projects and the systems in development so you can quickly under-
stand the environment, system characteristics, and whether they are similar to your
own. We derived these examples from actual companies that we authors have inter-
acted with, but we abstracted many characteristics and details for confidentiality
reasons, and in some cases we combined characteristics from two similar organiza-
tions into a single example.

These examples feature three different companies, developing different kinds of
software-intensive products in three different domains. We named the three projects

From the Library of Jan Wielemans

ptg47401904

Chapter 3 Moons of Saturn—The Crucial Role of Context40

after three moons of the planet Saturn. Their size variation represents the sizes of the
three companies:

 • Atlas (diameter: 30 km)

 • Phoebe (diameter: 213 km)

 • Tethys (diameter: 1,062 km)

An easy way to differentiate the projects is to remember that the sizes of the
moons grow in alphabetical order: Atlas is smaller than Phoebe, which is smaller
than Tethys.

Table 3.1 summarizes the key differences among the three software products and
the respective companies in terms of the eight main factors and two others, describ-
ing domain and process.

Case Study 1: Atlas—The Small Startup

Atlas is a small startup company, barely three years old, whose original founders act
as the senior management. Atlas has a single product in the e-commerce space.

The Atlas development team is collocated and has grown from 4 developers (the
founders) to about 15 within two and a half years. They use an ad hoc agile process,
neither formalized nor rigorously followed, but they do speak to each other daily, and
all use a very well-defined tool set that allows them to quickly deploy new features to
customers. They are very focused on their market and tactically “pivot,” a term used
to denote a change in product direction that drives a corresponding change in the
software product specification. There is no clear role specialization in the team, and
everyone contributes to all aspects of development, including requirements, design,
coding, and testing.

The Atlas design has no deliberate or explicit architecture. It has no formal doc-
umentation: The developers say that “the code is the doc.” Atlas uses an almost
continuous delivery for its installed base, but for the wider audience using the open-
source part of the system, it has a slower rhythm for releases of about three weeks.
However, it has limited regression-testing capabilities. The codebase in Java and
JavaScript, with some C, is now about 400,000 source lines of code (400 KSLOC).

The key business driver for Atlas is finding its niche and carving out its piece of
the market. The development team added some features to the product in the open-
source version to help Atlas attract new business for the full-blown product and
develop a friendlier image. The company is in a domain with no external regulation
or governance pressure.

From the Library of Jan Wielemans

ptg47401904

T
h

ree C
ase Stud

ies: M
o

o
n

s o
f Saturn

41

Table 3.1 Contrasting the three case studies

Factor Atlas: Small startup Phoebe: Agile shop Tethys: Global giant

Domain E-commerce Healthcare IT Transportation

Size 400 KSLOC* 2 MSLOC 4 MSLOC

Architecture Data analytics, usability,
evolvability, cloud, MEAN
stack (MongoDB, Explorer.js,
Angular.js, Node.js), big data

Security, privacy, scalability,
service-oriented architecture
(SOA), cloud, large
databases

Safety (reliability, high availability,
fault tolerance), performance,
multiple designs, hardware
dependent, real-time embedded

Business
model

Market-driven pivots in
service to online user base

Open-source software of the
partner organizations for
business growth

Main contractor for an external
customer

Team
distribution

Single collocated team, fluid
organization

Core team and a few
dispersed teams in a single
country

Multiple teams (>10), strictly
defined roles, globally dispersed

Rate of
change

Days to weeks Months Years

Age of
system

Starting, active development 5 years, modifications for
new markets

Over 15 years, in maintenance

Criticality No Moderate High

Governance Minimal: internal Moderate: external
regulatory compliance

High: multiple external standards,
regulatory compliance, certifications

Process Ad hoc agile with DevOps,
rush to customers, multiple
betas

Agile using Scrum, involved
product owner

Hybrid, iterative, formal
documentation and quality assurance

*KSLOC, thousand lines of code; MSLOC, million lines of code.

From the Library of Jan Wielemans

ptg47401904

Chapter 3 Moons of Saturn—The Crucial Role of Context42

As a result of constant pivoting, Atlas has accrued a moderate amount of techni-
cal debt, mostly under pressure to deliver the next prototype to the next key reference
customer. The product suffers from scalability and evolvability issues, but the code-
base has remained relatively clean. The development team has only limited regression-
testing capability, and team members are wary of major refactorings.

The current level of technical debt in the codebase is becoming a source of tension
between team members. Some developers are pushing to rebuild the product from
scratch, which is a huge risk, as it would not allow any externally visible progress for
six to eight weeks, and the senior management team is pushing back.

Case Study 2: Phoebe—Agile Shop with a Viable Product

The Phoebe team is developing an open-source software solution that supports
health information exchange at the national level. The product has grown from
meeting an initial small-scale need to attracting many organizations that would like
to set up health information exchanges. The product has been in development and
use for about six years, and it has been evolving with participation from both govern-
ment and private-sector users as well as contributions from developers. Phoebe
derives its revenue from selling services, not application or source code.

The core Phoebe development team is collocated, but a small number of develop-
ers in partner organizations also develop functionality and contribute to the backlog
for their most pressing user stories. The core team size has fluctuated from 35 to 8,
decreasing over the years. In addition, at times multiple subcontractor teams have
developed different features of Phoebe. The core team has consistently used Scrum
to manage iterations and followed agile software development practices.

The Phoebe design has evolved over the years to get ahead in a competitive
domain dominated by critical quality concerns such as security and privacy. In addi-
tion, the development team must ensure that the product complies with a number
of IT standards related to privacy and healthcare data. Phoebe is developed with
a service-oriented software paradigm, and now the organization is investigating
migrating some of its services to the cloud. To foster open contribution and enable
new organizations to adopt the product, the development team has accumulated
a substantial amount of online documentation on the architecture, design, open
issues, and codebase as well as user documentation for deployment, installation,
and use. These documents are open access and at times get out of sync due to differ-
ent priorities of the core team.

The key business driver for the Phoebe product is to provide a reliable, safe, and
efficient infrastructure for addressing the challenges of the growing health informa-
tion exchange. There are many competitors from the private sector, but by embracing
an open-source model, the product owner aims to increase contribution to develop-
ment as well as product quality and use.

From the Library of Jan Wielemans

ptg47401904

Three Case Studies: Moons of Saturn 43

In a domain that is not only competitive but also watched by many eyes in the
nation, Team Phoebe struggles to manage multiple stakeholders with diverse require-
ments, get ahead of changing technology, and sustain a viable product. As a result,
technical debt accrues, in most cases intentionally. While Team Phoebe has been try-
ing to repay that debt by prioritizing technical debt reduction in major releases, tech-
nology lock-in has become a major hindrance to meeting this goal. The development
team keeps track of technical debt items, which are managed with other items of
the backlog, tagged as “techdebt.” However, members of the core team do not have
a consistent process for identifying and managing technical debt. For example, the
team tried using some tools to look into code quality, but it did not sustain their use.
Major refactoring releases have eliminated some of the existing technical debt or
made it obsolete, but Phoebe has not communicated this broadly to its stakeholders,
and it is not clear how the team determines which issues are most important.

Case Study 3: Tethys—The Global Giant

Tethys is a large, global, multi-business organization. The Tethys product is 15 years
old. It is safety-critical embedded avionics software, developed as a product line. The
product team needs to balance many concerns of an evolving legacy product-line
system that has been in existence for over a decade: large customer-installed base,
new markets to open, changes in underlying technology, and the like. There is con-
stant pressure to stay on top of competitive innovation with increasing demand from
customers to include features. As a result, Team Tethys must, on one hand, define a
new rhythm of agility in a complicated context and, on the other hand, pay due dili-
gence to tough quality attribute requirements such as safety criticality, reliability, and
security.

The Tethys product is developed by multiple development teams, and at times
there are more than 100 developers on task. Project management must coordinate
across system engineers, quality assurance teams, and compliance teams, both
internal and external to the organization. Team Tethys also works with contractors
extensively, which introduces another level of complexity to development.

As is typical with such systems, Tethys evolves through major planned upgrade
releases to meet business goals. The longevity of the product and the different fami-
lies of products in the product line are sources of major revenue for the organization.
As a result, the upgrades often prioritize new features over needed re-architecting.
The complexity of the deployment makes it impossible to have more than one major
release per year and some minor releases for emergency bug fixes.

Such a long history comes with a lot of technical debt, which includes both
architectural issues and code quality concerns as a result of developer turnover and
inconsistent subcontractor practices. While code quality issues are not ideal, they
do not block day-to-day development. Tethys suffers the most technical debt due to

From the Library of Jan Wielemans

ptg47401904

Chapter 3 Moons of Saturn—The Crucial Role of Context44

its architecture. Needed re-architecting efforts have not occurred in a timely man-
ner, technology has changed but the product has not, each contractor has introduced
his or her own interpretation of the structure, and the list goes on. Everyone on the
team, from the most junior developer to the most senior manager, is aware of this
debt, although not everyone understands the gory details or the extent of it. Yet it is
hard to motivate the team to allocate the time and funding to tackle the debt because
no one knows how to gracefully reduce it while keeping the business rolling.

Case Study Comparison

Table 3.2 summarizes the technical debt issues the three projects are facing and how
they are managed, if at all.

There is not one universal prescription for managing technical debt that would
work for all three projects. The contextual factors color not only the specifics of each
organization’s technical debt but also the way it can be managed.

Technical Debt in Context

The specific context factors and their interactions will help you understand your
system and navigate the causes and consequences of its debt. The bottom line

Table 3.2 Technical debt issues addressed by the three case studies

Atlas: Small startup Phoebe: Agile shop Tethys: Global giant

Technical
debt issues

Lack of
scalability, lack
of regression
testing,
using code as
documentation

Locked-in
architectural choices
that have proved
limiting

Mismatched
assumptions between
teams, high turnover,
internal code quality,
aging system lagging
in technology

Technical debt
awareness and
management

Awareness of
technical debt late
in the timeline,
conflicting
priorities in
addressing it

Identification of
technical debt,
regular focused debt
reduction, incomplete
consideration of all
aspects

Technical debt as the
elephant in the room

From the Library of Jan Wielemans

ptg47401904

Technical Debt in Context 45

is that all organizations with long-lived software-intensive systems have to deal
with technical debt within their context. We cannot emphasize enough the impor-
tance of understanding this as it is a critical first step in successfully managing
technical debt.

Principle 3: All Systems Have Technical Debt

Banking and
Finance

Transportation

Electrical Energy

Gas and Oil Storage
and Delivery

TD
TD

TD
TD

Only the most trivial systems would not have some form of technical debt
because they do not evolve much over time. Other systems, such as safety-
critical systems, may have technical debt that is more visible, especially relative
to the aspects that could impact safety due to increased scrutiny.

As we progress through the book, we will look at how the three different organ-
izations described here use various techniques to improve how they handle their
technical debt.

From the Library of Jan Wielemans

ptg47401904

Chapter 3 Moons of Saturn—The Crucial Role of Context46

All Opportunities Come with Risks
by Linda Northrop

We make life decisions—pick a college, choose a profession, take a job, vie
for a promotion, select a partner, buy a house, have children. In each deci-
sion there are inherent opportunities that can provide fulfillment and growth.
There are also inherent risks. Risks are problems that haven’t happened yet.
The risks in life decisions may materialize into problems that cause varying
degrees of dissatisfaction, frustration, and worse.

So it is with software. Let me share some experiences.
Consider the decision made by countless designers and programmers in

the 1970s to handle dates by storing a year value in a two-character string.
Why would they have done that when a year is four digits? Memory at the
time was at a premium, and every opportunity for memory conservation
was important, especially for something as ubiquitous as the value of year.
It worked. It was awesome…until 20-plus years later, when the glut of these
systems taken together created a major problem with potentially disastrous
consequences and global, vast technical debt. In the years leading up to 2000,
what I just described was dubbed the “Y2K problem.” This is personal. I
designed and coded some of those systems. Even worse, I programmed some
in PL/I, in which it was possible to overlay different kinds of storage—and I
did, on the year field! Why did I do this? It was a great opportunity to save
storage, and the probability of the risk I took becoming problematic was
miniscule. I just never imagined anyone would be using these systems 10 years
later, let alone 20. I was little concerned that my systems had technical debt
that had to be repaid before January 1, 2000. Thanks goodness, it was.

Here is another bit more recent example. Beginning in 1994, a U.S.
Army tactical command-and-control system, called Force XXI Battle Com-
mand Brigade and Below (FBCB2), was designed as a hardware/software
prototype demonstration system for on-the-move operations (think tanks,
Humvees, helicopters, forward operating bases) that would revolutionize
situational awareness capabilities. For those of you without military back-
ground, situational awareness means knowing the answers to these basic
questions: Where am I? Where are my buddies? Where is the enemy? What
is the environment?

FBCB2 was to pioneer (among other innovations) the use of GPS receiv-
ers, a tactical Internet, and local computer displays with human interaction

From the Library of Jan Wielemans

ptg47401904

Technical Debt in Context 47

(Bergey et al. 2005). In doing so, the designers and developers had an oppor-
tunity to provide unprecedented, sophisticated capability to the warfighters
(who were still relying on physical maps): They made software decisions that
prioritized functionality—proving this new capability. That strategy was suc-
cessful. FBCB2 was used by U.S. forces in the Balkans, Afghanistan, and Iraq.
It was the U.S. Army’s most successful entrée into battlefield digitalization
and, most importantly, it saved lives.

Not surprisingly, there were also risks in the architectural decisions that
prioritized functionality. Modifiability, scalability, interoperability, and exten-
sibility were poorly supported. As FBCB2 enjoyed widespread acceptance
and accolades, the technical debt associated with the architectural decisions
became problematic. Modifications, new configurations, and maintenance
proved difficult and costly. The system needed to be re-architected, and it was.
In my opinion, the opportunity to field a less robust system that saved lives
and yet risked downstream evolution and sustainment problems was worth
the risk and the technical debt. Again, thank goodness, the debt was repaid.

More recently, a colleague shared that his software development organi-
zation chose AngularJS—a great opportunity to take advantage of a power-
ful front-end web application framework that was widely used, supported,
and interoperable. There was a proprietary framework layered on top of
AngularJS and hundreds of internal applications using this stack. AngularJS
not only provided functionality but standardization across the underlying
applications. There was little risk as far as anyone could see…until Angular
2 (now called simply Angular) was released to replace AngularJS. Angular
is considerably different from its predecessor in language (now TypeScript)
and features. The result was considerable technical debt to migrate both
the proprietary framework and associated applications to Angular. The
changes to upgrade just the underlying proprietary framework were esti-
mated to take one year, and until it was ready, the applications were to con-
tinue writing to the older AngularJS. Some of the applications chose a more
expeditious route, going rogue and redeveloping to use Angular directly.
The standardization across applications is now lost. Still, the opportunity
afforded by AngularJS and Angular (at least in my opinion) is worth the
risk. The coupling at the root of the technical debt might have been reduced
from the outset, perhaps making it possible to preserve the standardization
along with the functional advantage.

(continued)

From the Library of Jan Wielemans

ptg47401904

Chapter 3 Moons of Saturn—The Crucial Role of Context48

There are many other examples I could share. Although I have no scientific
evidence to substantiate my view, I have been at both life and software devel-
opment for more decades than I would like to claim. What I do claim (and I
don’t think I am unique) is that it is wise to seize opportunities in life and in
software development, mindful that there will always be risks and, in soft-
ware, technical debt. This book is not about avoiding opportunities. Rather, it
is about being cognizant of technical risks (as much as possible) and smartly
managing the fallout should they become problems. All three of my examples
could have benefited from these insights and approaches.

What Can You Do Today?

Identify the factors of context in your project that can create conditions for technical
debt buildup. It is also important to use your knowledge of the context to gain insight
into how specific practices for managing technical debt apply in your particular
situation.

For Further Reading

The context of software development explained in this chapter is based on previously
published work (Kruchten 2013). It is similar to the “agility at scale” model of Scott
Ambler (2011).

The Atlas, Phoebe, and Tethys projects that we use as examples throughout
this book are based on our experiences. There are other case study examples
in the literature that may match your software context. Guo and colleagues
(2016) describe a Brazilian software company that provides enterprise-level soft-
ware development, consulting, and training services. They explain the impact
of technical debt on a Java-based, database-driven web application for water
 vessel management. Ampatzoglou’s team (2016) explores technical debt in seven
embedded software systems. Klotins’ team (2018) reports on how technical debt
accumulates in a startup context using studies from 86 startups. And Sculley and
colleagues (2015) reflect on their experiences developing industry-scale machine-
learning systems and summarize the seven different categories of debt that they
observe.

From the Library of Jan Wielemans

ptg47401904

Chapter 4: Recognizing Technical Debt

Chapter 5: Technical Debt and the Source Code

Chapter 6: Technical Debt and Architecture

Chapter 7: Technical Debt and Production

PART II

Analyzing Technical Debt

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

51

Chapter 4

Recognizing Technical Debt

In this chapter, we describe the causal chain of technical debt: causes and
 consequences. We expand on the concept of a technical debt item as a simple mecha-
nism to identify and record the technical debt in a system. Then we explain how a
software evolution strategy provides a starting point for analyzing the costs associ-
ated with technical debt.

Where Does It Hurt?

On any project that has run for a while, development teams might begin to observe
signs that trouble is brewing, that something is not quite right or not working as well
as it was before. The system becomes prone to certain types of defects, more bugs, or
more crashes. Customers make more change requests, and it takes developers longer
to satisfy them. Some customers even walk away from the system in frustration.
 Project managers are amazed by the estimated effort to implement what at first looks
like a small improvement. These are consequences of technical debt, but they repre-
sent only the emerged part of the iceberg; they are symptoms of a more daunting
condition in the system.

In Chapters 1, “Friction in Software Development,” and 2, “What Is Techni-
cal Debt?” we characterized actual technical debt as mostly invisible, except to
the developers. But technical debt has consequences—sometimes even a chain of
consequences—some of which transpire outside the system. Some of these conse-
quences may be visible as symptoms of the underlying technical debt.

This chain of causes and effects looks like this:

Causes → Technical debt → Consequences → Symptoms

From the Library of Jan Wielemans

ptg47401904

Chapter 4 Recognizing Technical Debt52

Let’s look at this chain in more detail with a simple example, based on a story
introduced in Chapter 1, about a Canadian company that first developed a product
for customers who speak English and then needed to make the product multilingual.
This company is Atlas, the small startup, one of the three representative examples
introduced in Chapter 3, “Moons of Saturn—The Crucial Role of Context.”

Early in its existence, Atlas produced a demo version of its product almost over-
night to show to a group of venture capital investors. A rudimentary scaffolding,
called L10N (localization) and I18N (internationalization), was used in the code in
lieu of proper localization and internationalization software. To appeal to another
part of the Canadian population, the developers next wrote ugly code to support
one other language, French, in addition to English. A few weeks later, the CEO of
Atlas assured prospective Japanese customers that a Japanese version could be com-
pleted just as quickly as the French version. In fact, adding this third language proved
extremely cumbersome. It required major changes in the way the code was devel-
oped. It also meant removing and redoing all the changes made to accommodate
French. And it took quite some time to achieve and necessitated putting other devel-
opments on hold.

The chain of cause and effect in this case looks like this:

 • Causes: Developers completed the first version in time for the demo under
schedule pressure. They were also unfamiliar with I18N and L10N software.

 • Technical debt: Code snippets to handle a second Latin-alphabet language
were scattered all over the codebase because internationalization had not been
 considered as a key architectural driver and had to be retrofitted.

 • Consequences: The code was error prone and could not support other
 languages, especially non-Latin-alphabet languages.

 • Symptom: The visible consequence was a long delay to add support for a third
(non-Latin-alphabet) language, when the team finally recognized the impact of
the issue.

But the news was not all bad. Another consequence was that the investors were
impressed by the bilingual version, and they moved forward with funding:

 • Consequence: The company got a third round of investment from a venture
capital firm (yeah!).

If members of the Atlas development team had been aware of the technical debt as
it was incurred, they would have identified the risk early and could have made some

From the Library of Jan Wielemans

ptg47401904

Where Does It Hurt? 53

contingency plans to deal with it. It is likely the schedule would not have given them
the flexibility to accommodate French debt free, but they could have begun proac-
tively managing the debt while supporting future languages. This would have helped
set expectations for a longer release when negotiating resources for the Japanese
version. More often than not, technical debt is unintentional and does not become
visible until much later, when consequences surface.

The first step toward recognizing technical debt is to investigate the chain of cause
and effect in reverse:

Symptoms → Consequences → Technical debt → Causes

Using the analogy of a health issue, a physician would start from the symptoms
to diagnose the problem. Similarly, you should aim to detect more consequences of
technical debt, possibly less visible ones, by looking inside the system, and they will
eventually point you to the development artifacts containing the debt. We call these
artifacts and their associated principal and interest a technical debt item (refer to
Chapter 2). Identifying these items aids in resolving the problem at its source rather
than treating the symptoms and then seeing the problems resurface.

Pursuing this path of analysis, you next ask, “Why do we have this debt item?”
The answers to this question will help you locate the causes of technical debt—even
its root cause. While understanding causes isn’t strictly necessary for resolving the
technical debt, it may provide insight into how the development environment is cre-
ating conditions for incurring technical debt. It may lead to changes in the organiza-
tion to avoid generating more technical debt. We will explore causes of technical
debt in more depth in Chapter 10, “What Causes Technical Debt?”

Time

Occurrence Awareness Tipping Point Remediation

T1 T2 T3 T4

BLISSFUL IGNORANCE SUFFERING FROM DEBT DEBT-FREE

GETTING VALUE OUT OF DEBT

Technical Debt Net Liability

Technical Debt Net Asset
TECHNICAL DEBT

Figure 4.1 Reaching the awareness point

From the Library of Jan Wielemans

ptg47401904

Chapter 4 Recognizing Technical Debt54

In the technical debt timeline we introduced in Chapter 2, the first goal is to reach
the point of awareness, or knowing what technical debt you have in your system
(see Figure 4.1). The technical debt item will enable you to track the debt you become
aware of within your software development process so that you can estimate,
discuss, and prioritize actions to take.

What Are the Visible Consequences of Technical Debt?

Some symptoms—such as the release delay faced by Team Atlas for its Japanese-
language version—emerge after the entire system has been affected. They surface
late in the development cycle and manifest as increased testing time, problems inte-
grating subsystems into the rest of the system, and projects hitting major impedi-
ments that stop the release of new features. Other symptoms surface later still,
during maintenance, and are reflected in increased maintainability and sustain-
ment costs.

These symptoms are consequences of technical debt that manifest directly in
the system. But consequences can reach further into the environment of which the
system is a part. These consequences include an overall decline in quality that is
visible to the end users and results in an increase in customer change requests or
a decrease in market share as usage declines. When the consequences of debt are
visible, they become easier for development teams to communicate to decision
makers. Visible consequences also make it easier to get management buy-in for
fixes, as Joe, a developer from Tethys, the global giant introduced in Chapter 3,
summarizes:

I think that it is fairly easy to convince management when performance is really bad, when

they are experiencing latency, when systems stop working, and when they see exceptions

on the user interface.

But it is also a risk because by the time consequences become visible, the debt may
also have a higher cost of remediation.

Some symptoms of technical debt surface earlier during software development,
before they affect the entire system. These include an increasing number of issues
and bugs, a decreasing rate of development productivity (for example, velocity)
or cumulative flow, and increasing code quality concerns (for example, cyclicity,
McCabe complexity). Development teams often are aware of these symptoms, even

From the Library of Jan Wielemans

ptg47401904

Writing a Technical Debt Description 55

the debt itself, but do not have the mechanisms or incentives to communicate the
issue. This is where the technical debt item can help.

Principle 4: Technical Debt Must Trace to the System

011001 100101
010110 001000
100010 110110
011011 001011

TD

TECHN
ICAL DEBT PRACTICE

To reason about technical debt, estimate its magnitude, and offer informa-
tion on which to base decisions, you must be able to anchor technical debt to
explicit technical debt items that identify parts of the system: code, design, test
cases, or other artifacts. A development organization also needs to recognize
other forms of friction related to processes, people, and the development infra-
structure. But these sources of friction are causes of technical debt; they are
not the debt themselves.

When you trace technical debt to the system, start with your business context,
assess artifacts across the technical debt landscape, and record the results as a techni-
cal debt description.

Writing a Technical Debt Description

A technical debt description captures where in the system the debt is located (the
concrete system artifact) and the associated state of consequences that it causes in
the system.

From the Library of Jan Wielemans

ptg47401904

Chapter 4 Recognizing Technical Debt56

Recall that Atlas’s small startup team has just released the second version of its
product, with the addition of French to a system that already supports English. The
project team is now contemplating adding support for a third language.

A user story to describe the new feature request might take this form:

As a <stakeholder>, I want to <action with system> so that <benefit>.

For Atlas, this looks as follows:

As the Atlas Company, we want a Japanese-language version of our product so that we can

increase market share and profit.

However, you need more than a user story to describe a technical debt item. You
need to enhance the basic story by documenting some of the who, what, when,
where, and why (also known as the five Ws, or 5W) to describe the problem so that
you can make it visible to the entire project team and deal with it as you would any
other issue on the backlog. A technical debt description is a user story that includes
the five Ws that explain the associated technical debt.

Here is the 5W version of the Atlas team’s technical debt description:

As a developer (who), I need to pay down the debt where internationalization (what) is

scattered over the code (where). The accumulating cost to add support for additional

languages will soon outweigh the initial benefit of implementing the ad hoc solution

of if-then-else statements for the first two releases to obtain another round of funding

(when). There will be a long delay to support the next language, and the code will

soon no longer support additional languages, especially languages using non-Latin

characters (why).

You will need to collect your technical debt descriptions in what we call the tech-
nical debt registry, or registry for short. But you can use the same repository and tool
that you are already using to manage work—your backlog.

Table 4.1 lists the essential fields to capture a technical debt item. They can easily
be incorporated into your issue tracking process and technical debt registry.

Typically, to track technical debt, software development teams use whatever tool
they routinely use to manage the project, such as an issue tracker system or a defect
database. Most issue trackers include capabilities to create custom types and fields.
We strongly recommend creating a type for technical debt items and tagging techni-
cal debt descriptions with a label, such as “techdebt,” if they are stored with user
stories, defects, and other tasks.

From the Library of Jan Wielemans

ptg47401904

Writing a Technical Debt Description 57

If your team is disciplined, members can easily document the discussion of
consequences and change requests as part of the detailed description field of an
existing issue type. However, we often observe that software developers explain the
what and the where as they incur or become aware of technical debt, but they fail
miserably to highlight clearly the consequences of not fixing it, how the debt might
grow over time, and a reasonable time to pay the debt if the fix must be deferred.
Therefore, we recommend at a minimum creating a custom field and building the
discipline to record the consequences of accumulating debt. That will help you
assess how high the interest of the debt is growing. Such a simple practice has pow-
erful operational benefits, such as retrieving all outstanding and possibly closed
techdebt issues and assessing their importance and priority against the team’s
resources.

Table 4.2 shows the technical debt description for Atlas after the second release of
its product, with the addition of French to a system that already supports English.
The project team is now contemplating a third language.

Table 4.1 Technical debt description

Name What is it? This field is a shorthand name for the technical
debt item.

Summary Where do you observe the technical debt in the affected
development artifacts, and where do you expect it to
accumulate?

Consequences Why is it important to address this technical debt item?
Consequences include immediate benefits and costs as well
as those that accumulate later, such as additional rework
and testing costs as the issue stays in the system and costs
due to reduced productivity, induced defects, or loss of
quality incurred by building software that depends on an
element of technical debt.

Remediation
approach

Describe the rework needed to eliminate the debt, if any.
When should the remediation occur to reduce or eliminate
the consequences?

Reporter/assignee Who is responsible for servicing the debt? Assign a person
or team. While in most cases the who aspect can be trivial,
in some situations the debt resolution may need to be
assigned to external parties. If remediation is significantly
postponed, this field can communicate that decision.

From the Library of Jan Wielemans

ptg47401904

Chapter 4 Recognizing Technical Debt58

 Understanding the Business Context for Assessing
Technical Debt

Clearly understanding your business goals is essential for your team to establish cri-
teria for selecting suitable techniques and tools to analyze your software, identify the
technical debt, and document the technical debt items that matter to you. It will give
you the proper starting point for managing technical debt.

Table 4.2 Techdebt on internationalization

Name Atlas #5118, language internationalization handling scattered
over the code

Summary The code to handle a second Latin-alphabet language is
scattered all over the codebase, and it cannot support other
languages, especially non-Latin-alphabet languages. This
choice was initially due to schedule pressure to meet a deadline
for a demo, which took priority over modifiability concerns.
It is also related to the team’s unfamiliarity with language
internationalization (I18N) and localization (L10N) software.

Consequences Long delay to add support for a third language (non-Latin-
alphabet). We ran an architecture dependency analysis and
discovered changes ripple through the system. Change proneness
leads to increases in the time to make changes due to the
complexity of the system, to integrate due to dependency, and to
reuse code and tests because dependent modules must be included.
This will be a huge issue if we build on the existing structure. If
we wait to make the change until the next release, consequences
will be slowing velocity due to accumulation of debt that requires
extra work to add support for additional languages.

Remediation
approach

Remove the tight coupling that leads to more interdependency,
coordination, and information flow issues between the user
interface and the business logic. Select an existing I18N library.
Xavier from Joe’s team studied some options and suggests
adopting one of the newer libraries as our best bet going
forward.

Reporter/
assignee

Usability team discovered the issue. Joe’s developer team will
have to deal with it. They are analyzing the impact of the change
to give an estimated time frame.

From the Library of Jan Wielemans

ptg47401904

Understanding the Business Context for Assessing Technical Debt 59

The process to follow in uncovering technical debt is the same as for uncovering
any other issue in your system. The challenge is to be disciplined enough to trace the
concerns about the business goals to the relevant technical debt item and anchor it
in the concrete system artifacts. We recommend starting with the business goals and
concerns and anchoring the rest of the activities in those goals accordingly:

 1. Understand your key business goals.

 2. Identify key concerns/questions about the system related to your business
goals.

 3. Define observable qualitative and quantitative criteria related to your ques-
tions and goals.

 4. Select and apply one or more techniques or tools to analyze your software for
the criteria defined.

 5. Document the issues you uncover as technical debt items.

 6. Iterate through activities 2 to 5.

Understanding technical debt starts with enumerating the key business goals and
the context of the business. The Atlas, Phoebe, and Tethys projects, like most if not
all other software development projects, share a similar goal of reducing develop-
ment costs, but their different contexts require executing this business goal in differ-
ent ways.

The business goals have immediate bearing on key concerns related to the sys-
tems and, consequently, their source code, architecture, development, deployment,
and delivery infrastructure. A clear enumeration of the business goals will help iden-
tify the criteria that you need to measure the concerns against. For example, if an
organization has a business goal of reducing maintenance costs, some questions to
ask about the source code can include “What is the degree of ease and speed required
to enhance the software?” and “Does it make more sense to evolve the current system
or develop a new one from scratch?” These questions should also take into account
the team’s position on the technical debt timeline as that will influence the analysis
strategies. For example, did the system acquire the debt recently? Or has the debt
been accruing for a while, with yet unknown impact beyond the tipping point?

The next step then becomes a matter of defining measurement criteria to assess
the answers to those questions. If the criteria are not met within reason, technical
debt starts accumulating. The larger the gap in meeting these criteria, the greater
the consequences. Technical debt increases the costs of change and rework, so these
criteria should be input for assessing the impact of rework and cost of change.

From the Library of Jan Wielemans

ptg47401904

Chapter 4 Recognizing Technical Debt60

Moreover, they allow the development team to select and apply analysis methods
and tools to assess the artifacts accordingly. The final activity is to document the
uncovered technical debt in the form of a technical debt item, while consolidating or
linking to related issues, where possible.

After conducting these activities summarized in Figure 4.2, you will have a solid
basis to reason about your technical debt. This brings you to the awareness point.
You will also probably be able to determine whether you are beyond the tipping point
on the technical debt timeline.

Ideally, the process of uncovering and managing technical debt is not a distinct, inde-
pendent, one-time ceremonial activity but iterative and continuous. As development
continues, you will incrementally revise and improve on identifying your technical debt
items. Your business goals are not likely to change rapidly, but when they do change,
check whether the traceability from goals to questions still holds or whether you need
to add new questions and measurement criteria. And, most importantly, listen to team
members and understand their concerns about where significant technical debt resides
in the system to guide the assessment process and serve as a sanity check on the results.
In addition, use the debt assessment process to avoid confusing the causes of technical
debt with your current debt. Any sound approach to establishing solid technical debt
management practices assumes that you are willing to assess the context and state of
your software development project to identify the causes of your debt. In Chapter 11,
“Technical Debt Credit Check,” we provide a technique to guide your efforts.

Assessing Artifacts Across the Technical Debt Landscape

Using business goals to drive the approach to identify technical debt items will take
you throughout the technical debt landscape, to the code, to the architecture, and to
the production infrastructure.

Technical Debt and Code

Technical debt is closely associated with the code itself, usually resulting from sched-
ule pressure, lack of a documented programming standard, lack of tools, and

Understand

business goals

Iterate

Identify concerns/

questions about

system related

to goals

Define criteria

related to

questions and

goals

Select and

apply analysis

technique

Document

technical debt

items

1 2 3 4 5

Figure 4.2 Identifying technical debt items

From the Library of Jan Wielemans

ptg47401904

Assessing Artifacts Across the Technical Debt Landscape 61

developers’ errors. You will find plenty of resources on the Web about assessing your
code for technical debt and its symptoms, including code quality standards, code
smell examples, static code analyzers, security compliance checkers, and the like.

We will devote some time to code-related issues and technical debt in Chapter 5,
“Technical Debt and the Source Code,” where we describe how to look beyond exter-
nal quality issues such as defects and recognize when there are internal code quality
issues that may require you to deal with technical debt. We explain how using static
code analysis techniques can help you discover accumulated issues in source code
that could result in technical debt and how to filter and prioritize the results to more
effectively avoid unintentional buildup of technical debt.

Technical Debt and Architecture

Technical debt associated with the architecture results from key early decisions made
in the design of the software product, such as choices of technology, programming
languages, platforms, frameworks, middleware, and how to partition the system.
The key difference between technical debt at the code level and technical debt at the
architecture level is that the code is much more concrete, tangible, and visible. It can
be easily explored and manipulated by using software tools.

Many architectural issues surface during deployment or run-time, even if the
structure of the system and its code appear to be satisfactory. Not only is it typically
more difficult to detect and assess architectural technical debt with tools, but also the
cost and value associated with repaying the debt are larger and deeply intertwined in
a complex network of structural dependencies.

Changing major architectural decisions is hard because these decisions have wide-
ranging consequences for a software system—its functionality, present and future; its
key quality attributes, such as modifiability, performance, security, and availability;
and its code, which will need to change to support changes in these decisions. Such
changes are usually made in large and long-lived systems, where the payoff will be
significant.

Paradoxically, architectural debt is what happens to successful systems and com-
panies: The size and scope increase, the business targets shift, companies merge, and
acquisition leads to the merging of incompatible systems or systems that were built
using different premises.

We’ll examine architectural technical debt more closely in Chapter 6, “Technical
Debt and Architecture.”

Technical Debt and Production

Not all technical debt is strictly associated with the code or the architecture. Techni-
cal debt can also occur in production infrastructure. Current DevOps trends are

From the Library of Jan Wielemans

ptg47401904

Chapter 4 Recognizing Technical Debt62

increasing automation capabilities and tool support, blurring the boundaries
between development and operations, and exposing deficiencies in the production
process used by the development organization. As a consequence, the delivery envi-
ronment is becoming a key software development artifact (also referred to as infra-
structure as code). The production infrastructure contains significant code and has
an architecture as well. If the build, test, deployment, or delivery strategy and accom-
panying tools do not align, evolving the system is harder and riskier.

We discuss technical debt that stems from the delivery process and production
infrastructure in Chapter 7, “Technical Debt and Production.”

What Color Is Your Backlog?

Step back now and look at what we have added to the work of the software
development team: a technical debt registry! At any point in time, the soft-
ware development team is facing a set of “things” it has to do to make pro-
gress and tracking the backlog in one or more development tools. We sort the
things to do into four categories, as shown in Figure 4.3.

There are things to do that are directly visible to the outside world:

 • Adding functionality or features

 • Fixing defects

Features add value to the product, whereas defects reduce the value of the
product. These activities drive the organization, the sales, the success, and
the customer satisfaction, and they are visible on the release schedule. But
there are also things to do that are not directly visible and that are not directly
driven by the outside world:

 • Defining a software or system architecture and establishing and refining
a production infrastructure

 • Repaying technical debt

These activities have a cost to implement, though they do not directly add
value. Technical debt is in this category: invisible to the outside world but
indirectly adding negative value to the software product.

From the Library of Jan Wielemans

ptg47401904

What Can You Do Today? 63

What Can You Do Today?

Simply providing a means to document known technical debt as technical debt items
can be an eye-opening experience for a development team. It also creates a technical
debt awareness mindset for the team, which helps reduce the rate of unintentional
technical debt going forward. You can use this as a starting point for your registry
and step back from there, articulating the overall business goals and deciding what
further analysis may be needed. Use the following activities to start documenting
your technical debt:

 • Refine the “techdebt” category in your issue tracker into a technical debt
description. Point at the specific software artifacts involved—code, architec-
ture, or production infrastructure.

 • Going further, possibly reorganize your backlog to explicitly “tag” the four
categories of work shown in Figure 4.3.

Defects Technical
Debt

Features

Negative
Value

Positive
Value

Visible Invisible

Architecture
Infrastructure

Figure 4.3 The four things to do

Figure 4.3 summarizes the four kinds of things to do that are managed in
the software development product backlog. You can make them easier to dis-
tinguish by color coding the items.

 • Features: Visible and positive value (green)

 • Defects: Visible and negative value (red)

 • Architecture and infrastructure: Invisible and positive value (yellow)

 • Technical debt: Invisible and negative value (black)

Whether your backlog is managed in a single tool or not is another choice.

From the Library of Jan Wielemans

ptg47401904

Chapter 4 Recognizing Technical Debt64

 • Create coding, architecture, and production infrastructure standards against
which to measure technical debt.

 • Standardize on a single form of “Fix me” or “Fix me later” comment in the
source code to mark places that should be revised later. They will be easier to
spot by using a tool.

Software developers can easily incorporate technical debt management into their
daily tasks. For example, for issues that have related technical debt items, developers
should incorporate remediation strategies as part of their “done” criteria. We have
observed that creating such a technical debt management practice changes developer
behavior. Developers disclose their technical debt in the form of discussions and
comments by either explicitly referring to issues as technical debt or adding com-
ments such as “fix me,” “workaround,” or “this is a hack.” Creating explicit techni-
cal debt items is an opportunity to enable a more proactive management strategy.

For Further Reading

The process we introduce in this chapter to identify technical debt items is strongly
influenced by the Goal Question Metric (GQM) approach defined by Vic Basili,
Gianluigi Caldiera, and Dieter Rombach (1994).

The motivation and benefits of writing a good technical debt item are similar to
those related to writing a good bug report. A lot of research, especially by Micro-
soft, has underlined the importance of clearly written bug reports, which are likely
to get more attention than poorly written ones. Work by Tom Zimmermann and col-
leagues (2010) provides empirical evidence in this regard. Much of this evidence also
supports the importance of writing a good technical debt item. Li and colleagues
(2015) have proposed a scenario-based approach to identifying actual architectural
debt items.

Developer discussions and code comments include technical debt item
 discu ssions. Bellomo and colleagues (2016), Bavota and Russo (2016), and Potdar
and Shihab (2014) give some examples of such technical debt items. The technical
debt description we discuss in this chapter systematizes this practice. Many authors
have identified the concept of a technical debt registry, but in particular, see Narayan
Ramasubbu and Chris Kemmerer (2017) at the University of Pittsburgh.

Shane Hastie interviewed Philippe Kruchten for InfoQ in 2010 on the four colors
tactic for your backlog illustrated earlier in Figure 4.3.

From the Library of Jan Wielemans

ptg47401904

65

Chapter 5

Technical Debt and
the Source Code

Comprehensive analysis of technical debt requires understanding of short-term and
long-term issues with business goals, source code, architecture, testing, and build and
deployment infrastructure, as well as how they are all related to each other. While you
might conduct separate analyses for each of these artifacts, it is important to recognize
that they are intertwined. When you make decisions about remediating technical debt,
their interrelationships are especially important, as discussed in later chapters. In this
chapter, we explain how to use source code as input to recognizing technical debt.

Looking for the Magic Wand

A web search for analyzing technical debt results in many vendor web pages describ-
ing tools, mostly those that conduct automated static program analysis. They prom-
ise that such analysis will help measure, and consequently reduce, your technical debt.

When you are faced with technical debt for the first time in a software develop-
ment project, you might feel tempted to rush out to acquire one of these tools, hop-
ing that you can identify and measure all your technical debt in one magic stroke. But
do these tools provide the right approach to understanding your technical debt? And
are they sufficiently comprehensive?

Let us look at an example from the Phoebe project. During a quarterly project
review, the project manager became concerned about the increasing number of
defects. She noted, “Our maintenance costs are increasing.” The developers felt
that this was the result of spaghetti code, or unnecessarily convoluted and unstruc-
tured source code. They looked into using a static program analysis tool to help
them understand the complexity of their system, and they selected SonarQube, an

From the Library of Jan Wielemans

ptg47401904

Chapter 5 Technical Debt and the Source Code 66

open-source but well-tested tool that supports their Java-based project. Running
such code quality analyzers typically yield results similar to that shown in Figure 5.1.

This snapshot demonstrates some potentially confusing results about the quality
of the Phoebe project’s source code. Static analyzers are likely to provide a long list
of issues related to your code, and those issues may or may not be technical debt, it
may or may not be essential to resolve them, and they may or may not be related to
your current business objectives. Understanding how to use static analyzers to locate
your technical debt without getting lost in overall defects or bad code quality is one
of the most daunting aspects of technical debt management.

For the Phoebe project, the tool found a total of 13,417 issues in the code, most
of which it listed with the severity code blocker, critical, or major. The tool does fur-
ther sorting by bug, vulnerability, and code smell. Code smells and some of the bugs
and vulnerabilities could be symptoms of deeper underlying issues related to techni-
cal debt. What should the development team do about them? Should team members
record each one as a technical debt item in the issue tracker? Overwhelmed by the
result, the team created one new issue and added it to the backlog: “Resolve technical
debt based on the results of the static analysis.” And there it lingered. Needless to
say, this is not a well-defined technical debt description.

We propose a more focused and deliberate approach to technical debt analysis, which
includes using static analysis tools only after deciding what you will do with the infor-
mation they provide. Depending on where you are on the technical debt timeline, you
may consider using source code as input for technical debt analysis for three reasons:

 • The team is struggling to meet a deadline, and there are increasing numbers of
defects. These symptoms should trigger code analysis.

 • The team conducted a Technical Debt Credit Check (described in Chapter 11,
“Technical Debt Credit Check”) and identified causes such as staff turnover,
lack of skill development, and time pressure. Such business issues should trig-
ger analysis of the code, as it is likely that mistakes and complexities may have
been introduced.

 • There are no immediate concerns, but the team would like to be proactive with
code quality by performing regular lightweight checks of the code. This is a
best-case scenario.

Severity

Dashboards

Minor 3992

Info 1156

Issues

Blocker 155

Critical 1110

Major 8160

Figure 5.1 Results of the code analysis for Phoebe

From the Library of Jan Wielemans

ptg47401904

Looking for the Magic Wand 67

Principle 5: Technical Debt Is Not Synonymous with Bad Quality

Technical Debt
as Investment

INTEREST

PRINCIPAL

C
O

S
T

C
O

S
T

INTENTIONAL STRATEGICINTENTIONAL STRATEGIC
DECISIONSDECISIONS

TECHN
ICAL DEBT PRACTICE

The original definitions of technical debt and the wide use of the term in the
blogosphere could lead us to think of it as simply bad code quality. Using
terms with negative connotations—such as quick-and-dirty, shortcuts,
bad design choices, death by a thousand cuts, and so on—amplifies this
impression.

Low internal code quality is effectively a kind of technical debt—maybe
the prevalent kind in the technical debt landscape. Tools including static
code analyzers assist in identifying problems with low internal quality
and related issues with documentation and testing. However, as Steve
McConnell, Martin Fowler, and others have pointed out, there are also
deliberate, intentional, strategic decisions at the level of the architecture of
the system or the choice of technologies that are made for an immediate
gain, usually to reduce time to market. These choices also create technical
debt, and they are not related to bad code quality at all.

You may decide not to develop a user interface in multiple languages
right away but instead choose to defer this choice to a later time, when the
original market’s needs have been satisfied. This does not mean that your
code is of bad quality. You do, however, need to figure out a way to deal stra-
tegically with the thousands of issues that quality analysis of the codebase
may reveal.

From the Library of Jan Wielemans

ptg47401904

Chapter 5 Technical Debt and the Source Code 68

The information you get from a source code analysis can help you recognize and
describe technical debt items and determine where you are on the technical debt
timeline, especially whether you’ve passed the tipping point. In other words, are
you approaching the suffering period—when the cost of technical debt surpasses
the original value of incurring it—or are you well within it? The following sections
proceed through the activities of technical debt analysis described in Chapter 4,
“Recognizing Technical Debt.”

Understand Key Business Goals

If you don’t know where you are going, any route will do. Simply answering the
question “How much technical debt does this code have?” is not useful. Technical
debt should be identified as an enumeration of meaningful technical debt descrip-
tions, not as an enumeration of code quality violations. Identifying the amount of
technical debt occurs in the context of addressing a business goal about system qual-
ity and functionality. Investigating system quality and assessing whether it meets the
business goals may reveal a portion of the code that is producing the symptoms of
debt. The consequences of this piece of code ultimately give rise to two kinds of
technical debt interest: recurring (constant additional effort incurred due to keeping
this piece of code in the system—that is, living with this debt) and accruing (the cost
of changing the system and retrofitting parts).

Each software development organization has its own distinct business goals
and objectives. These are highly dependent on the context and product of the
organization. In Chapter 3, “Moons of Saturn—The Crucial Role of Context,” we
cover the many factors that can create conditions for the occurrence of technical
debt. Business goals and associated risks serve as a good starting point to articu-
late how to go about technical debt analysis. Knowing your position on the technical
debt timeline and your plans for remediating the debt helps you align the technical
debt analysis with your business goals.

Table 5.1 provides some common examples of business goals related to produc-
tivity, quality, cost, and time to market. The associated pain points are symptoms
that can inform code analysis for identifying technical debt. Some organizations do
a good job of clearly communicating short-term and long-term business goals, while
some development teams have to infer the goals through the pain felt across their
organization as a consequence of the debt they are carrying.

The first row in Table 5.1 shows the business goal “Create an easy-to-evolve
product,” one of the goals driving the Phoebe project. Symptoms of technical debt
have become visible outside the development team, and management has noticed that
features are being delayed and maintenance costs are increasing. When management

From the Library of Jan Wielemans

ptg47401904

Understand Key Business Goals 69

Table 5.1 Examples of mapping business goals to the technical debt timeline

Business
Goal Pain Point Causes

Point in TD
Timeline

Create an
easy-to-evolve
product

Our maintenance and
evolution costs are increasing.
Developers are new to the
project and say we have
spaghetti code, resulting in an
increased number of defects.
We need to understand the
extent of the problem before
taking any action.

Inexperienced
team members
create conditions
for the occurrence
of technical debt.

Awareness

Increase
market share

Customers have started
switching services. We have
had at least two security
breaches in the past six
months. We keep patching
things up, but we need to step
back and understand what
is going on in the codebase.
More security breaches
could result in further loss of
business.

The teams
stopped following
standard
procedures
and did not
understand key
architectural
requirements—
security in
particular.

Tipping
point: The
project is
experiencing
symptoms,
and the team
needs to do
something
now.

Reduce
development
costs

If we reuse this piece of
software, we anticipate
reducing our development
time, which is currently quite
lengthy, but we are not sure if
we will incur technical debt
in the future if we go forward
with the reuse strategy.

Building on a
product that
already has debt
could create
more debt; the
team does not
completely
understand the
future contexts
where reuse may
be needed.

Occurrence

Reduce time
to market

Our velocity keeps dropping.
It takes forever to implement
even a simple change and test
it, and we don’t know what is
causing the delays.

Teams do not
create sufficient
documentation
or follow many
of the standard
processes.

Past the
tipping point

From the Library of Jan Wielemans

ptg47401904

Chapter 5 Technical Debt and the Source Code 70

asked the developers why, they pointed to buggy code of increasing complexity. The
team conducted a Technical Debt Credit Check (described in Chapter 11), which
revealed that the cause is the frequent addition of new team members to the project
without appropriate onboarding. The organization has just become aware of techni-
cal debt on the technical debt timeline.

Identify Questions About the Source Code

Your business goals and position on the technical debt timeline will inform the spe-
cific questions and concerns about your source code. Let’s keep building on our
example. The pain experienced by the Phoebe project in the context of its business
goal led the team to ask key questions about the system and consequently its source
code: “Where is the maintenance cost being spent? How do we trace symptoms such
as defects to the codebase?” Table 5.2 provides the driving questions for the source
code analysis of Phoebe’s business goals from Table 5.1.

There are two categories of data that Team Phoebe needs to collect information
about to answer the driving analysis questions. One is code measurement criteria
that can be evaluated with code analysis. The other is symptom measures, such as
the number of defects or lingering issues and the time spent resolving such issues
and adding new functionality, which can be obtained from solid issue-tracking
procedures, along with configuration management and code check-in/check-out
procedures. The team can now correlate the results of the code analysis with the
symptom measures by answering questions such as these:

 • How much time have we spent patching vulnerabilities?

 • Where in the code are maintenance costs increasing during development?

 • How are defects related to the areas of the code that are causing increased
maintenance?

 • How often do developers change these areas of the system?

 • In how many places in the code do the developers need to implement changes?

 • How many change requests are developers able to complete per sprint/
iteration? How long does each one take, including testing?

 • Where in the codebase do the developers spend most of their time?

These examples suggest that the kinds of questions that code analysis can help the
team answer are often related to modifiability, maintainability, and secure coding.
There may be other related concerns; for example, to enable reusability, the team
may consider moving to decoupled microservices. Static analysis results alone would

From the Library of Jan Wielemans

ptg47401904

Identify Questions About the Source Code 71

Table 5.2 Common questions for source code analysis

Business Goal Pain Point Driving Analysis Questions

Create an
easy-to-evolve
product

Our maintenance and
evolution costs are increasing.
Developers are new to the
project and say we have
spaghetti code, resulting in an
increased number of defects.
We need to understand the
extent of the problem before
taking any action.

 • Does the code suffer
from established industry
maintainability or
modifiability issues, such
as complexity, cyclicity,
or extensive unwanted
dependencies?

 • What percentage of the
system is impacted? In which
areas?

Increase
market share

Customers have started
switching services. We have
had at least two security
breaches in the past six
months. We keep patching
things up, but we need to step
back and understand what
is going on in the codebase.
More security breaches
could result in further loss of
business.

 • Are there areas of our
codebase with known
vulnerabilities or secure
coding issues?

 • Are there areas of the code
with known security issues
that are related to each
other?

 • Are there other similar areas
of the code, and do they have
similar issues?

Reduce
development
costs

If we reuse this piece of
software, we anticipate
reducing our development
time, which is currently quite
lengthy, but we are not sure if
we will incur technical debt
in the future if we go forward
with the reuse strategy.

 • How easy is it to extend
the existing software, as
measured by criteria such as
reachability and dependency
propagation?

 • Are there existing defects
and evolvability issues in the
software that we need to be
aware of?

Reduce time
to market

Our velocity keeps dropping.
It takes forever to implement
even a simple change and test
it, and we don’t know what is
causing the delays.

 • How complex is our code?
 • How understandable is our

code?

From the Library of Jan Wielemans

ptg47401904

Chapter 5 Technical Debt and the Source Code 72

not return enough information to assess that approach, but it could provide input to
the decision-making process.

User-observable operational issues, such as frequent crashes, and unintended
functional results may also prompt code analysis for evaluating design fitness. Some
examples of checking for design fitness for operational concerns include analyzing
memory management, data flow, exception handling, performance, and security.
While limited, static analyzers do have analysis rules that check for design fitness.
Examples include the following:

 • Exception classes should be immutable (performance and security).

 • NullPointerException should not be explicitly thrown (performance and
security).

 • The user interface layer shouldn’t directly use database types (enforce Model–
View–Controller pattern).

 • Avoid the Singleton pattern (improve testability).

Define the Observable Measurement Criteria

By now we hope we have made the point clear: Static analyzers provide useful infor-
mation, but there is no magical metric or tool for identifying technical debt with
code analysis. There are some common maintainability/modifiability threads among
business goals and concerns about source code, as our examples demonstrate, but
one-size-fits-all measurement criteria for driving business goals do not exist. Choice
of technology and development language as a consequence of the business goals also
influence the measurement criteria. Therefore, a development team should deter-
mine the measures that will help members analyze a system in light of the analysis
questions the team generated.

If your source code is messy, then you are probably paying a lot of recurring
interest. Recurring interest occurs in the form of added time to implement new
features or test the system, added complexity that results in increased maintenance
costs, and system structure and behavior that are hard to understand and explain.
In such cases, there is no one area that you can scope as the location where the debt
resides, but overall the code has become too brittle. Creating concrete technical
debt items helps you focus on the problem and document supporting evidence as you
apply different kinds of analysis, be it tool-supported code analysis, architecture and
design reviews, or infrastructure monitoring metrics. We will discuss the latter in
subsequent chapters.

From the Library of Jan Wielemans

ptg47401904

Define the Observable Measurement Criteria 73

Table 5.3 associates symptom measures and code measurement criteria with the
Phoebe project’s business goals to better elaborate the pain points and driving anal-
ysis questions. The quality measures provide a means to measure the pain and to
check whether the symptoms are decreasing as the Phoebe team makes changes to
repay the debt and improve the system. Conducting the source code analysis against
measurement criteria associated with business goals will generate an initial list of
candidate technical debt items.

These are examples of starting points to help you recognize how multiple sources
of information are related to each other. One theme that emerges from these

Table 5.3 Examples of symptom measures and code measurement criteria

Business
Goals

Symptom
Measures Code Measurement Criteria

Create an
easy-to-evolve
product

Defect trends
(new defects
per iteration,
defects lingering
over multiple
iterations)

 • Maintainability and evolvability violations
against established industry measurement
standards (e.g., the ISO/IEC 25010
standard for system and software quality)

 • Code complexity measures (e.g.,
combination of source lines of code,
coupling and cohesion, fan-in/fan-out,
dependency propagation) associated with
the current maintenance costs and defect
rates

Increase
market share

Security bug
trends

Amount of time
spent patching

 • SEI CERT secure coding standards

Reduce
development
costs

Propagation of
change

 • Maintainability and evolvability measures
 • Code complexity

Reduce time to
market

Changing
velocity

 • Maintainability and evolvability measures
 • Code complexity

Improve
governance

Potential effort
spent per
violation

 • ISO/IEC 25010:2011 system and software
quality model

 • Specific coding standards for quality
models

From the Library of Jan Wielemans

ptg47401904

Chapter 5 Technical Debt and the Source Code 74

examples is that unmaintainable code can result in declining development efficiency.
The development team needs to ensure that members minimize accidental complex-
ity in order to manage the system with minimal unintentional technical debt and
keep the codebase understandable.

The devil is in the details. Writing clean, understandable, and well-thought-out
code is every team member’s responsibility. Integrated development environments,
automated code review, and unit testing software as well as static code analyzers
have increasing capabilities to assist developers in writing high-quality code.
Improving the capabilities of these tools is an ongoing challenge for the software
industry, especially in minimizing false-positive rates and warning messages and
making it easy for teams to incorporate them into their day-to-day development
activities.

What Tools Should You Use?

Probably the most commonly asked question about technical debt is “What
tool should we use to measure it?” Tools that link analysis results to your
business goals can help you identify and manage technical debt. Tools can
also be extremely useful if they can be integrated into continuous integration
tool chains, giving timely feedback to the developers, who can then decide
how to minimize unintentional technical debt.

As we already established, determining the right measurement criteria,
tools, and techniques for analyzing source code depends on your business
goals. And static analysis results alone will not provide a list of technical debt
items. The technical debt items are the areas of the system where the qual-
ity measures are symptomatic of the violations of code internal quality rules
revealed by the code measurement criteria.

Techniques such as code inspections and peer reviews can provide some of
the analysis results for the established measurement criteria. But a number of
static analyzers have increasing capability for assessing source code quality.
Some examples include Understand for C/C++; SonarQube for Java and
C/C++; Klocwork for Java, C/C++, or C#; and AppScan for analyzing secu-
rity in mobile apps and web-based systems. By the time you read this book,
there will probably be other relevant tools that we could have listed. Some
of these tools have real-time support, and they call attention to security
weaknesses and coding errors as developers write code.

From the Library of Jan Wielemans

ptg47401904

Select and Apply an Analysis Tool 75

Select and Apply an Analysis Tool

System quality goals for the Phoebe project include minimizing new defects at each
iteration and the amount of time existing defects linger on the backlog. Accordingly,
the team established code quality criteria that included industry standards for writ-
ing maintainable code and avoiding code complexity. However, despite these actions,
the team found itself struggling with unresolved defects, in particular hard-to-trace
defects in the code. According to the developers, one cause of messy code is the ten-
dency to copy and paste blocks of code. To avoid this practice, a new packaging
scheme had begun to be implemented, but the developers suspected that it hadn’t
been fully implemented yet.

The Object Management Group (OMG) released the Automated Techni-
cal Debt Measure specification developed by the Consortium for IT Software
Quality. The specification includes 86 measures for maintainability, perfor-
mance and efficiency, reliability, and security, as well as the estimated time to
fix each violation of a measure based on a survey of developers. The estimates
for individual violations culminate in one rolled-up technical debt figure
based on the aggregated measures and adjusted for the software context that
can cause a variation in the time to fix. These factors include complexity, con-
centration, evolution status, exposure, and technological diversity. Whether
a tool implements these measures and whether the measures are relevant to
your system quality goals determine how much benefit you may get from
managing your technical debt using this specification.

The ideal usage scenario in adopting a static code analyzer is to get ahead
of unintentional technical debt by using a tool that is accepted by develop-
ers and integrates well in their day-to-day workflow. Google developed an
in-house tool, Tricorder, to address this challenge. The motivation that led
Google to develop an in-house solution was to ensure that the tool could scale
to its needs and empower developers to write and deploy their own static
analysis to fit their needs. One driving success factor that resulted in Google
developers incorporating Tricorder into their development flow was the own-
ership they were given that enabled them to disable rules that did not serve
their context and write rules that did. This is a proactive approach to catching
code problems before they turn into technical debt.

As these examples demonstrate, just as there are no one-size-fits-all measure-
ment criteria for technical debt, there is no one-size-fits-all tool that will help you
understand the issues related to technical debt in your code or overall system.

From the Library of Jan Wielemans

ptg47401904

Chapter 5 Technical Debt and the Source Code 76

To help evaluate the code quality, the Phoebe team selected SonarQube as its static
analysis tool because it is open source, has a community to address developer ques-
tions, has a reasonably well-established rule set for Java, and incorporates maintain-
ability as well as security measures. SonarQube can detect duplicate code blocks and
the presence of packaging schemes. Developers’ knowledge of the areas of messy
code helped them configure the tool to run on these areas of interest. The code meas-
urement criteria also helped them configure the rules and set their priority.

As the team interpreted the analysis results, a closer look revealed that about one-
fourth of the 13,417 issues were related to duplicate code blocks around adapters.
This observation overlapped with the developers’ observation about spaghetti code
that was hard to understand. Using the navigation features of the tool, the develop-
ers located the areas in the code that were impacted most severely. The results also
showed a large number of empty Java packages; while such issues are usually minor,
they significantly increase the recurring interest on the debt because they increase the
software footprint and reduce the clarity of the system. The developers also mapped
these areas to the number and kinds of defects they had observed.

Document the Technical Debt Items

Once the development team has generated the initial data, the next step is to ensure
that members record the relevant results as technical debt items so that they can start
managing them. This is the role of the technical debt registry, which can be any tool
already used by the project: an issue tracker, a defect tracker, or a backlog manage-
ment tool. The team should take two actions:

 1. Document existing technical debt and create a strategy for paying it back.

 2. Address how to ensure that the team does not inject new debt into the source
code so no one has to deal with this many thousands of issues again.

These actions require establishing and enforcing some development practices.
Here we focus on documenting the existing technical debt items. Later, we summa-
rize development practices that minimize unintentional technical debt in the code.

The Phoebe team wondered if it should look at all 13,417 issues tagged as tech-
debt. Or should the team focus only on the blockers, which total 155 items? Or should
it also include the major and critical issues in the registry? Team Phoebe started
this analysis of the source code to see if any of the findings would overlap with the
increasing defects and maintenance costs. The team recognized that the duplicate
code and empty Java packages contributed significant amounts of recurring interest

From the Library of Jan Wielemans

ptg47401904

Document the Technical Debt Items 77

in the form of decreased understandability and small but annoying defects that
ripple through the duplicated code snippets.

The team decided to introduce two major technical debt items into the registry:
remove empty Java packages (see Table 5.4) and remove duplicate code (see Table 5.5).
The experienced developers on the team also recognized that while they uncovered
these technical debt items through a static code analysis of their codebase, resolving
them would probably require some architectural thinking and analysis. For example,
rather than duplicating the code, they would need to think about a common service
that could be invoked.

They each recognized that the accrued cost of removing the empty packages
was currently low, but it could increase over time if developers started adding code,
creating a drift between the implementation and the initial architecture of the
system. Removing the empty Java packages took care of about 250 of the issues
returned. Once the packages were removed, several hundred minor issues also
disappeared. Alternatively, the team could have elected to exclude these packages
from the source code analysis. In this case, however, including them helped the
Phoebe team recognize a recurring interest that it had been paying every sprint,
in addition to complexities arising from the unnecessarily increased deployment
footprint of the system.

Table 5.4 Techdebt on empty packages from the registry of the Phoebe project

Name Phoebe #345: Remove empty Java packages

Summary The re-architecting of the source code to support multiple
adapter specifications has introduced a new Java packaging
scheme. Numerous empty Java package folders are present
across multiple projects.

Consequences No impact to functionality; however, may lead to confusion
for users implementing enhancements or modifications to
the source code.

Remediation
approach

Using SonarQube, the team identified the empty packages.
New and existing classes have been moved into new package
folders; however, the previous package folders have been
left in place with no class files. Cleaning up these packages
should be trivial and ensure that there are no unintended
calls left.

Reporter/assignee A composite technical debt item as a result of our
SonarQube analysis retrospective. Will be assigned to the
Adapter team.

From the Library of Jan Wielemans

ptg47401904

Chapter 5 Technical Debt and the Source Code 78

Dealing with duplicate code is not as simple as removing empty packages because
the remediation strategy requires architecting a new solution to pay the current
principal. To address the accruing interest, Phoebe’s development team recognized
that the team needs to retrofit a significant number of classes with duplicate blocks,
which introduces a risk and adds time commitment, especially in testing. Therefore,
the remediation approach field emphasizes that the team needs to conduct further
re-architecting.

A large percentage of the major violations that the tool reported are related to how
exceptions are handled, how errors are logged, and how comments and commented-
out code are handled. These violations signaled to the Phoebe project manager that
the development team needed a reminder about using development practices that
avoid introducing unintentional debt, in particular by focusing on good software
craftsmanship and understanding of software design.

Then Iterate

Following the process for identifying technical debt items that the Phoebe team dem-
onstrated, team members decided to understand the complexity of the system first.
The business goal and questions about the source code that they struggled with were

Table 5.5 Techdebt on duplicate code

Name Phoebe #346: Remove duplicate code

Summary AdapterCore and CoreLibrary grew organically with a lot of
copy/paste code, resulting in over 40 blocks of code duplicated
within each of the modules in these subsystems.

Consequences No immediate impact to functionality; however, every time a
change needs to be made, several small defects are injected due
to the inability to propagate the changes to the blocks of code
duplicated.

Remediation
approach

See the results of the SonarQube analysis to identify the classes.
The remediation will need to include a re-architecting effort
and possibly introduce a factory class to handle the common
functionality across the duplicated blocks. This should have
been undertaken with the adapter architecture changes.

Reporter/
assignee

A composite technical debt item as a result of our SonarQube
analysis retrospective. We will have to postpone this to the next
sprint as the effort involved is higher than we anticipated.

From the Library of Jan Wielemans

ptg47401904

What Happens Next? 79

related to increasing defects as a consequence of spaghetti code. So, they decided to
analyze the structure of their code as well as its quality with the help of static code
analyzers and prioritize what areas would need to be remediated. They did this pri-
oritization based on the areas that were evolving the most and where they observed
the most defects.

When you complete a first analysis iteration, the goals and frequency of subse-
quent iterations should become clear. You might learn that analysis for security and
analysis for maintainability require different analysis questions, criteria, and tools,
so you might conduct these analyses in two different iterations of the technical debt
analysis. In another scenario, once you identify the technical debt items, you can
decide on a frequency of analysis to ensure that similar code quality issues do not
accumulate, in which case you may only apply the tool and document the issues.

When the software undergoes major changes or when business goals change, it
makes sense to iterate all the activities to align the analysis process with the new soft-
ware or new business goals. If you are intentionally taking on technical debt, then
you are motivated to optimize your effort for a business goal anyway. Consequently,
the measurement criteria derive from the intentional design decisions that lead to
technical debt. Having observable measures within the code that map to the design
decisions allows proactive management of technical debt within the code.

What Happens Next?

After selecting analysis criteria, running tools, and inspecting the code, you probably
have a handful of technical debt items in your technical debt registry. The process for
identifying technical debt items also assumes that you are performing the analysis in
retrospect. The registry does not answer questions about the overall assessment of
the system’s technical debt, but individually the items do address problematic areas.
At this point, you can take two courses of action:

 1. Address each technical debt item in isolation through local refactorings within
an iteration/sprint boundary.

 2. Consider the dependencies between the technical debt items.

Larger projects may require some planning across iteration boundaries.
Refactoring is the process of restructuring existing code without changing its

external behavior. Depending on the nature of each technical debt item, refactoring
the code locally without inducing architectural change may be the best strategy for
removing the debt. To determine the most cost-efficient approach to paying back your

From the Library of Jan Wielemans

ptg47401904

Chapter 5 Technical Debt and the Source Code 80

debt, the technical debt description provides a starting point for estimating the cost
of each technical debt item in isolation. The consequences identified help you under-
stand the recurring interest. The analysis of change provides input about accruing
interest. Using the following simple formula, assess each item over several iterations:

Recurring interest (consequence) + Accruing interest (propagating cost of change) ×
Probability of high-cost change scenarios

In this formula, the greater the probability of change, the higher the total cost of
debt. When deciding whether to pay down debt, compare the cost of the impact of
different change scenarios. If the technical debt items do not have the potential to
cause ripple effects or if they have no dependencies on other items, the approach of
focusing on one item at a time might work. We elaborate this first course of action in
Chapter 8, “Costing the Technical Debt.”

However, software development is rarely that simple. More often than not, you
will have to treat the technical debt items in reference to each other. Therefore, the
second approach requires a more elaborate design and traceability analysis to assess
the dependencies within the system boundaries as well as the technical debt items.
We tackle this second course of action in Chapter 9, “Servicing the Technical Debt.”

What Can You Do Today?

Now that you know how to use source code to recognize technical debt, you can
begin looking beyond external quality issues such as defects and recognize when you
have internal code quality issues that may require you to deal with technical debt.
Start by conducting these activities:

 • Understand the business context to guide the use of source code as input for
technical debt analysis.

 • Acquire and deploy in your development environment a static code analyzer to
detect code-level issues.

 • Analyze the code for the presence of unintentional technical debt and respond
by including debt items in the technical debt registry.

As an example, the Phoebe project realized the importance of maintainability
for a system. Lack of maintainability and technical debt are not the same thing, but
unmaintainable code will have a lot of unintentional technical debt. It is never too
late to make maintainability a non-negotiable software design principle for your
projects.

From the Library of Jan Wielemans

ptg47401904

For Further Reading 81

For Further Reading

There are several guidelines and standards for code quality. The ISO/IEC 25010:2011
System and Software Quality Models standard summarizes quality characteristics,
internal metrics (metrics that do not rely on the execution of the software), and
external metrics (those applicable to running software) (ISO/IEC 2011).

The Consortium for IT Software Quality (CISQ) publishes standards for auto-
mated measures of quality characteristics in security, reliability, performance effi-
ciency, and maintainability. These standards are a concrete place to start defining the
code measurement criteria related to your quality attributes.

The CERT Division of the Carnegie Mellon University Software Engineering
Institute has published secure coding criteria for C/C++ and Java that have become
an industry standard (SEI 2018).

A book by Visser and his colleagues (2016), Building Maintainable Software, has
successfully simplified the otherwise complex and ubiquitous problem of maintain-
ability to ten guidelines, with examples in C# or Java. The book reflects the decades-
long experience of the Software Improvement Group in the Netherlands in assessing
software projects.

In addition, the industry has developed methods to improve automation of soft-
ware quality. For example, Software Quality Assessment based on Lifecycle Expecta-
tions (SQALE) is a method developed by Inspearit, Inc., that identifies code violations
based on a categorization of testability, reliability, changeability, efficiency, security,
maintainability, portability, and extensibility. The method creates an assessment on
technical debt reduction based on fixing these issues (Letouzey 2016; Letouzey &
Ilkiewicz 2012).

There is wide application of using static code analysis to assess technical debt.
Two examples are work by Arcelli-Fontana and colleagues (2015) and Zazworka and
colleagues (2014). They show how to analyze for code smells that can lead to techni-
cal debt and summarize similar challenges of using the existing tools, as discussed in
this chapter.

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

83

Chapter 6

Technical Debt and
Architecture

In this chapter, we explain how to recognize technical debt at the architectural level.
We introduce lightweight structural analysis techniques that you can apply to the
code or the design to help identify and understand design decisions that lead to tech-
nical debt.

Beyond the Code

In Chapter 5, “Technical Debt and the Source Code,” we showed how the accumula-
tion of small deficiencies in the code can lead to a substantive amount of technical
debt, which can in turn make forward progress harder, more costly, and more error
prone. But there is increasing evidence that the most expensive technical debt is
related to the architecture of the software system—and it is harder to pay back. The
effective management of technical debt must therefore extend beyond coding issues
and consider the architecture of the system.

One common example of this type of technical debt is created when a develop-
ment team, pressed for time, designs an initial system with little modularity for
its first release. This lack of modularity affects development time for subsequent
releases. Additional functionality can be added later only by doing extensive refac-
toring, and this refactoring impacts future timelines and introduces additional
defects. In this category, which we will call “architectural debt,” we find not only the
structure of the system—organization, decomposition, and interfaces—but also the
choice of key technologies, from operating systems to programming languages and
from selection of frameworks to open-source components.

From the Library of Jan Wielemans

ptg47401904

Chapter 6 Technical Debt and Architecture84

Compared to code-level debt, architectural debt is more likely to be intentional.
It follows from decisions made in the early phases of a project, often because the
development team did not understand how the system would evolve in the future or
because the business context significantly changed. Architectural debt can also be
an unintentional consequence of what we called the technological gap in Chapter 2,
“What Is Technical Debt?”: The original design was fine at the time it was made, but
technology evolved over the years, turning the original choice into technical debt. For
example, perhaps you designed a system with a local database, but 10 years later,
having all your data in the cloud would be a better choice, and your local database
now represents technical debt.

In Chapter 5, we explained how tools can assist in spotting most of your code-
level technical debt. For architectural debt, these tools are less helpful. Some tools
can expose the structural issues of a system, such as circular dependencies, high
coupling between modules, and classes that have too much responsibility. These and
other practices result in unmaintainable and hard-to-modify systems that require
significant rework later in development; hence they accumulate technical debt. But
there are aspects of the architectural debt that cannot simply be detected by tools.
This type of debt must be dug out of the heads of the people most familiar with it: its
designers. No tool will tell you that you should have used a NoSQL database instead
of a relational database. Architectural constructs and decisions are in many cases
only conventions used in further design and implementation.

There is a direct relationship between a well-thought-out architecture that also
guided the implementation of the system and a manageable accumulation of techni-
cal debt. For example, if the goal is for the system to be sustained for decades and to
respond to changing technology, the architecture of the system must enable separation
of concerns, use decoupled technology layers for ease of upgrading, and ensure that
change is localized for ease of adding new functionality. These are important archi-
tecture concerns that should drive the design reviews as well as manifest themselves
in the codebase, not only at the beginning of the system’s development but through-
out its lifecycle. The system should be designed and monitored for quality attributes,
or architecturally significant requirements, such as requirements about how reliable,
secure, or maintainable the system is. Quality attributes help focus attention on cross-
cutting aspects of the system, such as how it performs under different conditions, how
data flows and is managed, and how it depends on other software such as databases,
user interface and backend frameworks, middleware, and so on.

We can supplement the limited functionality of tools in uncovering architectural
debt by assessing specific quality attributes. Again, these assessments will likely
mostly reveal symptoms of technical debt; designers will have to identify the actual
architectural elements that are subject to debt as technical debt items. For example,

From the Library of Jan Wielemans

ptg47401904

Beyond the Code 85

when scaling from a few hundred users to 10,000 simultaneous users, the drop in
performance is a symptom of technical debt: A key quality attribute is affected. The
symptom is caused by the large number of remote procedure calls between these two
subsystems—the debt item itself—which was a not a problem when the system had
only a few hundred users.

Here is an example of architectural debt voiced by a developer of the Phoebe
project:

There were some problems in the infrastructure code where there was originally an

architecture in place, but it wasn’t followed consistently. So, thought had been given to the

architecture, but in the implementation, shortcuts were taken, and dependencies were not

clean. This shows up as increased complexity and coupling in the codebase.

This phenomenon is called architectural drift: The intended architecture is poorly
or inconsistently implemented throughout the system. This example emphasizes
that this kind of technical debt accumulates slowly over the life of the project, which
gradually drifts into debt. It is not a sudden, visible event that could trigger corrective
action. Now Phoebe developers know the areas of the codebase where the increased
complexity has become overwhelming, and their best course of action going forward
is to concretely specify the highly complex areas. With some strategic thinking, code
analysis can help you uncover such accumulating architectural issues.

Paradoxically, too much early focus on architecture and evolvability may lead to
technical debt, too. The developers of Phoebe complain:

The original design had lots of options and flexibility, which in the end we were never to

exploit. But as a result, many of the interfaces to key components are very heavy, complex,

hard to use (especially by newcomers in the project), and error prone. This is now slowing

us down, with no real benefit yet to the project.

There are several strategies you can use to uncover technical debt in the architec-
ture of a system as you iterate through the activities of the technical debt analysis (as
described in Chapter 4, “Recognizing Technical Debt”). You can ask the designers
about the general health of the system or start with a problem. You can examine
the architecture itself or the code and other software artifacts to get insight into the
architecture. Typically, the best approach is a combination of these activities:

 • Ask the designers about the health of the system or a problem.

 • Examine the architecture.

 • Examine the code to get insight into the architecture.

From the Library of Jan Wielemans

ptg47401904

Chapter 6 Technical Debt and Architecture86

We’ll review these options in this chapter. The starting point, the line of investiga-
tion, and the analysis differ among these three approaches, but the objective is the
same: to identify architectural technical debt items in the context of key business
goals.

Principle 6: Architecture Technical Debt Has the
Highest Cost of Ownership

TD

TD
TD

TD
TD

Architectural technical debt items have impact across the system as they are
deeply intertwined in a complex network of dependencies. If the architecture
is not well thought out, costs accumulate as the system becomes hard to evolve.
Changing major architectural decisions can be much harder than changing source
code, especially as the system grows, since such changes have wide- ranging con-
sequences. Remediation is a major undertaking that may span several iterations
or consume most of the available resources over multiple releases.

Ask the Designers

Ask the people who know the system best, the designers themselves, about the cur-
rent state and history of the system. Ask the designers about the general health of the
system or start with an important problem.

From the Library of Jan Wielemans

ptg47401904

Ask the Designers 87

Here is a sketch of a strategy to inquire about the general health of a system and
start locating technical debt items:

 • Identify the people who have been involved in the project as software archi-
tects, technical leads, or experienced developers.

 • Secure some time to meet with them individually or in small groups of two or
three. A one-hour interview should give you enough information.

 • Explain clearly the objective of the meeting and define the term technical debt.
Stress that it may not be major defects of the system that are already known
and visible in the project issue tracker. To better focus the interview, you may
also explain some of the ultimate goals: flexibility, shorter release cycle, higher
dependability, and so on.

 • Ask questions such as these:

 • In retrospect, what design decisions did you or others make about the sys-
tem that you regret now?

 • Why do you regret that decision now? (What are the negative consequences?)

 • Was there an alternative at the time?

 • Is this alternative still feasible today?

 • Can you envision another alternative that would remediate the situation?

 • Focus only on the software, not on the people who made the not-quite-right
decision, or who pushed the team to do so, to avoid blaming anyone.

 • Rephrase the concern to express the technical debt items—the software arti-
facts affected, causes, and consequences.

 • Break down generic, high-level concerns into several smaller technical debt
items.

 • You may rapidly find references to already identified technical debt items as
you do a sequence of individual interviews; move quickly to each new one.

 • Quickly move on when you encounter what appears to be a matter-of-taste
issue: “For this kind of system, I much prefer Java over Ruby. Our original
choice of Ruby was a mistake!”

Doing individual interviews has some advantages and some drawbacks: On one
hand, it is more costly and time consuming. On the other hand, it allows Designer 1
to express concerns about a decision made by Designer 2, who may be his or her

From the Library of Jan Wielemans

ptg47401904

Chapter 6 Technical Debt and Architecture88

supervisor or a much more senior person. Honesty might be harder to express in a
group setting, depending on the culture of the organization.

Some of the findings from these interviews may have to be validated by inspect-
ing the design and code. On very large systems that have evolved over time, or if the
interviewee has not worked on the project recently, some technical debt items may
have already been repaid. You may be told, for example, that “we removed MySQL
and replaced it with Neo4J for Release 7 about three months ago.”

This interview strategy will bring out the elephant in the room, the technical debt
that everyone is aware of but does not want to express for a variety of reasons:

 • Protecting the person who made the decision that resulted in technical debt,
who may be a key player in the organization

 • A fatalistic feeling that nothing can change the system now, or it would be too
costly, so why bother

 • Cultural and social dynamics issues, such as losing face

 • Familiarity with the current situation and fear of the unknown (uncertainty
avoidance)

The Five Whys is an iterative interrogative technique used to explore the cause-
and-effect relationships underlying a particular problem. The primary goal of the
technique is to determine the root cause of a defect or problem by repeating the
question “Why?” Each answer forms the basis of the next question. When multiple
causes are suspected, they can be represented as a fishbone, or Ishikawa, diagram.
Here is an example of inquiring about an observed symptom that involves asking
“Why?”:

“This type of update takes too long to make.”

“Why?”

“Because the code to update is in six different places.”

“Why is the code in six different places?”

“Because of the strict decomposition of classes to realize the domain-neutral
component pattern we picked.”

“Why are we using this pattern?”

The outcome of this activity is the addition of technical debt items to your techni-
cal debt registry. These new technical debt items must be investigated by inspecting
the design or the code.

From the Library of Jan Wielemans

ptg47401904

Examine the Architecture 89

Examine the Architecture

A number of analysis techniques have proven useful for examining the architecture as
it is being designed and used throughout the software development lifecycle:

 • Thought experiments and reflective questions: Conducting thought experi-
ments and asking reflective questions can augment analysis. People think dif-
ferently when they are solving problems than when they are reflecting. Asking
reflective questions can challenge the decisions people have made, and that
challenges them to examine their biases. Ask questions such as these: What
are the risks that certain events will happen? How do the risks influence the
 solution? Is the risk acceptable?

 • Checklists: Use a checklist to guide your analysis. A checklist is a detailed set
of questions developed based on much experience evaluating systems. Check-
lists can come from taxonomies of quality attributes and associated archi-
tectural tactics that cover the space of design possibilities for managing the
quality attribute. For example, architectural means for controlling the prop-
erties of modifiability are concerned with coupling and cohesion. Ask ques-
tions such as these: What is the cost of modifying a single feature? Does the
system consistently support increasing semantic coherence? Does the system
consistently encapsulate functionality? Does the system restrict dependen-
cies between modules in a systematic way? Does the system design regularly
defer binding of important functionality so that it can be replaced later in the
lifecycle, perhaps even by users? Checklists can also be based on experience
with particular technology choices or specific domains.

 • Scenario-based analysis: A scenario is a short description of an interaction
with the system from the point of view of one of its stakeholders. A stake-
holder may pose a change scenario to see how costly it would be to modify the
system, given its architecture. Analysts can use quality attribute scenarios to
examine whether and how a scenario can be satisfied.

 • Analytic models: Well-established models can be used to predict properties of
a system such as performance or availability.

 • Prototypes and simulations: The creation of prototypes or simulations
complements the more conceptual techniques for analyzing the architecture.
 Prototypes provide a deeper understanding of the system but with added cost
and effort.

From the Library of Jan Wielemans

ptg47401904

Chapter 6 Technical Debt and Architecture90

A risk is an indicator of poor architectural health. These analysis techniques can
bring to light architectural risks, potentially problematic design decisions whose con-
sequences put the achievement of system requirements at risk and business goals in
jeopardy. Over time, if overlooked, they can create large amounts of technical debt.
Design issues in conjunction with evidence of accumulating rework could result in
adding a new technical debt item to the registry or conducting additional analysis to
confirm whether there is a risk or not.

Looking for Debt in Your Databases
by Eoin Woods

Much has been written about technical debt and how to find it, manage it,
and avoid it. But nearly all this work relates to the algorithmic and structural
aspects of an application. This ignores another important type of technical
debt that can be a significant liability for a system—that found in its data
models, the code that accesses databases, the database schemas, and the data
stored within them. This debt can be incurred at the conceptual and logical
levels as well as the physical levels of the data model (Al-Barak & Bahsoon
2016).

Manifestations of Database Debt

Intentional database debt is often found in situations where a specific set of
trade-offs is made during the database design phase to achieve specific quality
property requirements, typically performance or modifiability. This can result
in a system with a very highly normalized or denormalized relational data-
base schema. These database designs can then have undesirable side effects
for other qualities, resulting in problems such as query complexity or high
degrees of data duplication that make change difficult.

For accidental database debt, the trade-offs are often not clearly identified.
An example is where parts of the database schema are overloaded, and enti-
ties or tables intended for one purpose are used for another (such as a transac-
tion table being used to hold “magic” rows with special identifiers that hold
summaries or totals). This can occur at conceptual, logical, or physical levels
of abstraction.

Another problem that manifests at logical or physical levels is schema
structure duplication. For example, there should be one entity or table for,
say, all the sales records, but due to variations between regions, the expedi-
ent choice was to have separate, slightly different sales record tables for each
region, making consolidated reporting and changes to sales record keeping
much more difficult.

From the Library of Jan Wielemans

ptg47401904

Examine the Architecture 91

Most relational databases incorporate features to allow metadata such as
column nullability, foreign and primary key constraints, and data constraints
to be stored in the schema. These features can help reduce technical debt
within the physical data model and ensure that the logical model is correctly
implemented and maintained. However, to save time in initial implementa-
tion, this step is often skipped, and the result may be a database that is hard
to work in and keep consistent, as well as other problems such as “foreign
key” debt, as identified by Weber et al. (2014).

Some types of database technical debt occur specifically at the physical
implementation level.

One common problem seen in old systems is the abuse of strings that are
used to hold types of data that are interpreted in application code to be much
more specific types (such as numbers). This can even happen with date types.
I have seen situations where some records in a table had very odd dates in a
column, all a long time in the past. When I investigated further, I discovered
that someone had decided to store an integer value in the column in some
cases, converted it to a date in the code, and simply reversed the process when
they needed to read it again!

Nearly all databases rely on indexing for query performance, and a related
physical-level problem that can be prevalent in new and old systems is a lack
of consideration of indexing during development or maintenance changes.
This results in a database or specific queries performing fairly well for small
data volumes but mysteriously becoming disastrously slow as soon as signifi-
cant amounts of data are added.

When working with physical database design and implementation, achiev-
ing good database performance can be a complex balancing act of conflict-
ing forces (such as update versus retrieval performance), and working out the
right balance takes time, skill, and experience. Sometimes when pressure is
tight, we rely on intricate query or optimizer hints, tricks, or obscure configu-
ration settings, which are like a sticking plaster in that they solve the problem
right now, but they become parts of the system that no one dares to change as
they are hard to alter without hurting performance.

There are also some types of database technical debt that are introduced
during the design and development phases of system delivery.

Some databases, particularly relational databases, allow large amounts of
sophisticated code to be stored in the database as procedures and triggers.
This code often becomes badly understood spaghetti code as it is written in
specialist languages and can be difficult to test in isolation, making it difficult
to apply techniques such as test-driven development.

(continued)

From the Library of Jan Wielemans

ptg47401904

Chapter 6 Technical Debt and Architecture92

Most database systems work best when processing sets of data. This is
particularly true for relational databases that are inherently set processors.
However, many inexperienced developers don’t know this and have an itera-
tive “row-by-row” mindset, which leads them to write code that accesses the
database a row at a time. This is highly inefficient and may work well for
small tests, but the code inevitably needs to be rewritten for production use.

It is also important to apply the right database model to the problem at
hand. Over the past few years, we have had an explosion of the so-called
NoSQL databases, which include document databases, tuple stores, distrib-
uted cache-based data stores, and graph databases. Each type suits certain
kinds of workload very well and is very poor at others. Knowing which to
apply takes experience, and using the different models adds complexity.
A common type of database design debt is using one database model for all
types of problems due to familiarity with or ease of access to it. This can result
in an unsuitable use of the database—such as a relational database struggling
to process graph-style queries—and inevitable maintenance problems later.

Avoiding Database Debt

Given that database debt is not only possible but probably inevitable on most
systems that include a significant database, what can you do to avoid or miti-
gate it?

The key point is to treat database debt as a potential problem whenever
building or maintaining systems with complex databases. The techniques
you use to avoid debt in the rest of the application—such as pair program-
ming, design reviews, code reviews on check-in, automated tests, standards,
 automated code checking, and refactoring—are just as important for data-
base code.

That said, some of these techniques are quite difficult to do, such as unit
testing database access code or SQL. Similarly, automated code quality tools
for database code are significantly less common and advanced than for lan-
guages like Java and C#. This means that as well as awareness, you need a
proactive approach to prioritize the monitoring and management of database
technical debt in your projects and may need to integrate unfamiliar tools
into your environment (see Arulraj 2018; and Redgate 2018).

A database is a critical component within many computing systems, but
practitioners have often ignored the potential problems of technical debt
building up within this part of the system. This has caused significant opera-
tional and maintenance problems in many systems as their databases have
grown in size or needed to undergo significant changes.

From the Library of Jan Wielemans

ptg47401904

Examine the Code to Get Insight into the Architecture 93

It is important to maintain awareness of the potential problems that lurk in
the database layer. If you want to sustain useful and flexible systems, you need
to monitor for database technical debt just as actively as you would monitor
the rest of the application’s design and implementation, and you need to be
prepared to invest in remediating these problems over the long term.

 Examine the Code to Get Insight into the Architecture

Even if you do not have a description of the architecture to work with, you can still
get insight into the architecture by examining the code with the help of a tool that
understands dependencies and structures in the code.

Tools that support code analysis are becoming increasingly sophisticated and now
often also support dependency analysis. Quantitative techniques involve applying some
technique or tool to a software artifact to answer specific questions about specific sys-
tem properties. Many of the quantitative measures used on code can be applied to the
implementation structure or module view to assess the state of the architecture. Some
tools provide the ability to extract this module view directly from the code. Other tools
provide the ability to represent the module view as designed and compare it with the
code structure to check that the code conforms to the architecture.

Code measures have been adapted to code and design elements of increasing
scale. For example, cyclomatic complexity has been adapted to code and design
elements such as methods, classes, packages, modules, and subsystems of large
 systems; complexity can serve as a starting point for understanding how a sys-
tem is structured. Some tools also include rules to check for well-established
architecture-relevant patterns—for example, decoupling business logic from SQL
statements (Model– View–Controller) or checking for conformance to framework
usage. Run-time measures bring to the surface other architectural concerns that
have close relationships to how the code is structured—for example, how services
are decomposed and interact with each other, how responsive the system is, and
how data is handled.

To understand the impact of a change, developers need to identify the modules of
a system that are the focus of a change and follow the dependencies to the dependent
modules that will be affected by the change. Relevant techniques for analyzing indi-
vidual elements and their dependencies include the following:

 • Complexity of individual software elements: Lines of code, module size
 uniformity, cyclomatic complexity

From the Library of Jan Wielemans

ptg47401904

Chapter 6 Technical Debt and Architecture94

 • Interfaces of software elements: Dependency profiles identifying hidden,
inbound, outbound, and transit modules; state access violation; API function usage

 • Interrelationships among the software elements: Coupling, inheritance,
cycles

 • System-wide properties: Change impact, cumulative dependencies, propaga-
tion, stability

 • Interrelationships between software elements and stakeholder concerns:
Concern scope, concern overlap, concern diffusion over software elements

In using these techniques, it is important to focus not only on the results but also
on the assumptions under which a measurement was taken. Not all measures are
applicable, but there are a number of useful measures to draw from. Those you select
will depend on a number of criteria. What part of the system are you measuring?
Account for external dependencies, libraries, and frameworks. What is being
 measured? Tools often produce different results for seemingly simple measures such
as lines of code. How is the system represented? For example, propagation meas-
ures make assumptions about data and control flow using an abstract model of the
code that makes trade-offs in the fidelity of the results (for example, accuracy and
 precision). How are results combined? Some tools roll up technical measures into
a single economic measure of health. The underlying measures can still be useful.
For these reasons, it is helpful to look at the dependencies among the measures and
understand whether the assumptions apply to your situation. But looking at the code
is not ideal: Having different repositories or technologies makes spotting the many
interactions and dependencies very difficult.

These measures, whether qualitative or quantitative, can be compared with indus-
try trends or the project’s own data to establish thresholds. Exceeding a threshold is
an indicator of poor architectural health that could result in adding a new technical
debt item to the registry or conducting additional analysis to confirm whether there
is a risk.

The Case of Technical Debt in the
Architecture of Phoebe

In Chapter 5, we looked at examples of strategies Team Phoebe employed to uncover
debt. Phoebe started with an observed symptom of increasing defects and worked to
get to the root cause. The first step was for the project manager to ask the developers,
who pointed to the spaghetti code. Then a quality objective was elicited that set the
context for examining the code. The team identified two technical debt items in the
code: “Remove empty Java packages” and “Remove duplicate code.”

From the Library of Jan Wielemans

ptg47401904

The Case of Technical Debt in the Architecture of Phoebe 95

Team Phoebe continues to monitor the system for symptoms, iterating through
the steps of the technical debt analysis to see what additional information the archi-
tecture analysis will uncover. The team focuses on the following activities:

 1. Understand the key business goals.

 2. Identify key concerns/questions about the Phoebe system related to these
 business goals.

 3. Define observable qualitative and quantitative criteria related to their questions
and goals.

 4. Select and apply one or more techniques or tools to analyze the software for
the criteria defined.

 5. Document the issues uncovered as technical debt items and add them to the
registry.

 6. Iterate through activities 2 to 5 as needed.

Team Phoebe plans to switch focus between code and design as issues are
 uncovered. Related issues in the code could lead to an overarching design issue. Issues
in the architecture could point to hotspots worth analyzing in depth in the detailed
design and code. When team members perform activity 4, they now have the three
new techniques in their toolbox that we just described: ask the designers about the
health of the system or a problem, examine the architecture, and examine the code to
get insight into the architecture.

Understand Key Business Goals and Concerns/Questions

The key business goals were defined in the first iteration. One business goal driving
the Phoebe project is “Create an easy-to-evolve product.” The development team has
already looked at this goal from a code perspective. Another related business goal is
“Increase market share.” There is growing concern over security breaches that are
causing users to have lower confidence in the system. These breaches are another
pain point and have been traced to security-related bugs such as a crash due to an
out-of-bounds number. The developers discuss possible solutions. One offers, “We
could just fend off out-of-bounds numbers near the crash site, or we can dig deeper
to find out how this is happening.”

Another developer notes, “Time permitting, I’m inclined to want to know the
root cause. My sense is that if we patch it here, it will pop up somewhere else later.”

From the Library of Jan Wielemans

ptg47401904

Chapter 6 Technical Debt and Architecture96

Given the urgency of the issue, the team makes a quick fix and closes the issue,
only to have to open it again. A team member records the rationale as a comment
in the ticket associated with this issue: “Hmm…reopening. The test case crashes a
debug build. I have confirmed that the original source code does crash the produc-
tion build, so there must be multiple things going on here.”

The team members turn their attention to the two business goals to understand
technical debt in the architecture. The architecture design is now the artifact of inter-
est to complement the concerns and questions about the source code. The team
tries to answer more questions: How do we understand whether or not the design is
messy? How is the architecture related to the areas of the code that are messy?

The team also tries to answer questions about the new attribute of concern: How
much time have we spent patching the code in response to the breaches? Do these
patches get to the root cause, or is there an underlying design issue? Are the breaches
related to each other? Are they related to the messy design?

Define the Architecture Measurement Criteria

From the questions and concerns, team members define the criteria that provide a
measure of the architecture to see if they are on track to achieve key business goals.
Maintainability, as defined in the ISO/IEC 25010 standard, comes from a collection
of subattributes: modularity, reusability, analyzability, modifiability, and testability.

Modifiability may be related to adding new capability, a change in technology
(which we call the technological gap in the technical debt landscape), or the evo-
lution of other operational quality attribute scenarios to handle more stringent
demands as the system grows over time. Modifiability can be cast as a quality attrib-
ute scenario:

The developer wishes to change the user interface by modifying the code at design time.

The modifications are made and unit tested, with no side effects within three hours.

The response measure of the modifiability scenario (no side effects within three
hours) can be analyzed in terms of system quality measures (properties of the soft-
ware development process) such as cost-effectiveness in avoiding or eliminating
defects. Or it might be analyzed in terms of design measurement criteria (proper-
ties of the architecture) such as module design complexity, module independence,
complexity in interrelations, and concern scope, overlap, and diffusion. The latter
overlaps with the code measurement criteria that the team employed earlier. Some
code grouping constructs such as classes and packages can give insight into design
elements.

Next Team Phoebe defines the criteria for security. Security as defined in the qual-
ity standard ISO/IEC 25010 is a collection of subattributes including confidentiality,

From the Library of Jan Wielemans

ptg47401904

The Case of Technical Debt in the Architecture of Phoebe 97

integrity, non-repudiation, authenticity, and accountability. Security can be cast as a
quality attribute scenario:

An attacker from a remote location attempts to access private data during normal operations

of the system. The system maintains an audit trail, the data is kept private, and the source of

the tampering is identified.

The response measure of the security scenario (how much data is vulnerable to
a particular attack; how much time passes before an attack is detected) can be ana-
lyzed in terms of system quality measures (properties of the software development
process) such as cost-effectiveness in avoiding or eliminating vulnerabilities. Or it
might be analyzed in terms of design measurement criteria (properties of the archi-
tecture) such as adherence to secure design standards. If the response measure can-
not be met, then the ease of supporting this requirement can be considered a growth
scenario that has implications for modifiability.

Select and Apply Architecture Analysis Techniques
to Get to the Artifact

Realizing that there is only so much that can be learned from the code, the Phoebe
project brings in an external team to conduct an architecture evaluation. During the
evaluation, all the business goals and quality attributes are considered to discover
risks and trade-offs throughout the system. Qualitative reviews of the design uncover
risks to meeting Team Phoebe’s quality attribute goals. The analysis from the archi-
tecture review shows what business drivers are at risk.

The Phoebe team identified risks related to the adapter/gateway separation of
their architecture. Their architecture concept had a common gateway component
that presents a transaction service interface to the integrated enterprise systems and
applications while hiding the external resource interface. It also had a customized
adapter component to bridge the incompatible interfaces of the enterprise systems
and applications. The concerns they identified included the following:

 • The reference implementation for the adapter is not production quality.

 • The gateway has evolved to include operations not needed by all users and defers
some common operations, such as audit and logging, to the adapter. These
dependencies make it difficult, if not impossible, to separate the two components.

 • For use cases that require interaction with multiple endpoints, an application
can orchestrate multiple transactions itself or allow the gateway to handle the
request fan-out. The responsibilities of the gateway and adapter are not well
defined, leading to implementations with different performance, robustness,
security, and other quality-of-service characteristics.

From the Library of Jan Wielemans

ptg47401904

Chapter 6 Technical Debt and Architecture98

The design review also provided details about the problem of crashes. They
weren’t caused by a local problem, as the developers suspected. Tracing intercon-
nections in the Phoebe design revealed a dependency on an external library main-
tained by another group. Figure 6.1 shows these causes and their effect as a fishbone
 diagram (also called an Ishikawa diagram).

To complement the architecture review, the team used automated software anal-
ysis measures to uncover the fact that the system is becoming difficult to maintain.
Risks from the review provided context for scoping the code analysis to gain
insight into the design by measuring the complexity and change propagation of
the architecture. A number of methods, classes, and packages demonstrated high
complexity, measured with a combination of metrics such as method and class
size, cyclomatic complexity, and fan-in and fan-out. The analysis also showed a
rise in system cyclicity.

Document the Technical Debt Items

As team members apply the methods and tools, they document the analysis outcome
as the starting point of comparison with the project’s key concerns. The sample
technical debt item in Table 6.1 shows analysis of both the design and the code to get
insight into the maintainability of the architecture.

Very large negative

letter spacing to move

the text off-screen

TechDebt
on unexpected

crashes

Production

Code

Architecture

Why 1: 28 new reports related to the same

issue resulted in multiple patches, increasing

integration complexity

Why 2: New crashes were

discovered after deployment

by users

Why 3: Incomplete testing
Why 4: Unclear what

other areas of the system

were affected by the

same issue

The system crashes

on anything larger

than -186em

Web client and API

are incompatible

Why 5: Unclear build

dependencies on the APIs

and patches

Key

Major cause

Minor cause

Effect

Figure 6.1 Exploring the cause-and-effect relationships underlying the problem of
unexpected crashes

From the Library of Jan Wielemans

ptg47401904

The Case of Technical Debt in the Architecture of Phoebe 99

As shown in Table 6.2, the team also documented a technical debt item to record
the design issue at the root of the unexpected crashes.

Table 6.1 Techdebt on architectural choices

Name Phoebe #420: Locked-in architectural choices in adapter/
gateway separation

Summary Phoebe is based on service-oriented architecture design
principles and web service interfaces. The architecture is
broken down into two sections: a gateway and an adapter.
The gateway handles communication between different
organizations’ health information systems. The adapter
adapts the gateway to an organization’s backend system.
Phoebe has evolved to reflect a more complete architecture
but was stymied by increasing complexity and locking in
architectural choices that later proved limiting.

Consequences Immediate benefit is implementing a solution within schedule
constraints. Review of the feature matrix by each release
shows that the project is struggling to add new functionality.
Most releases are preoccupied with dealing with integration,
security, and other quality-related issues.

Long-term cost is predicted to be slowing velocity due to
accumulation of debt that requires extra work to add more
capabilities. Analysis of the artifact indicates the risks and
areas of rework:

 • A major risk theme surfaced by the architecture review
is adapter/gateway separation.

 • Static analysis of code provides insight into areas
of the architecture of major complexity and change
propagation based on dependency information.

Remediation
approach

Better define responsibilities of the adapter and gateway;
refactor to better separate the two components.

Reporter/
assignee

Design team.

From the Library of Jan Wielemans

ptg47401904

Chapter 6 Technical Debt and Architecture100

Service the Debt

After selecting analysis criteria, conducting the analysis, and inspecting the design,
Team Phoebe has a handful of technical debt items. Some of these items pertain to
code conformance issues. The code does not conform to the architecture. Under-
standing the architecture as designed provides the context for refactoring the as-is
architecture embodied in the code. Other items pertain to design verification issues.
The architecture does not support the business goals and needs to be re-architected,
which in turn triggers corresponding changes in the code. We will say more on this
topic in Chapter 9, “Servicing the Technical Debt.”

Table 6.2 Techdebt on unexpected crashes

Name Phoebe #421: Screen spacing creates unexpected crashes due
to API incompatibility.

Summary The source code uses a very large negative letter-spacing in
an attempt to move the text offscreen. The system handles
up to –186 em fine but crashes on anything larger. A similar
issue #432 was fixed with a patch, but there was another
similar report. Time permitting, I’m inclined to want to
know what the root cause of this is. My sense is that if we
patch it here, it will pop up somewhere else later.

Consequences We already had 28 reports from seven clients. And it
definitely leaves the software vulnerable. Finding the root
cause of this crash can be timely.

Remediation
approach

The quick and easy solution is to write a patch, but we
already seem to have done this twice. The responsible thing
to do is to first find the root cause and create a patch at
the source. I have a feeling the external web client and our
software have an API incompatibility. The course of action
I would take is to:

 • Verify where the root of this is.
 • See if we can fix it on our side, but I am tempted to

believe the external web client team needs to fix it, so
we would need to negotiate.

Reporter/assignee I need to discuss this with Brant as the fix may be more
involved than we think.

From the Library of Jan Wielemans

ptg47401904

For Further Reading 101

What Can You Do Today?

It is important to communicate the goals and the design approaches chosen for the
project with your team. These activities may be useful:

 • Get clarity on the yardstick by which you measure design and architecture,
at a minimum by clearly identifying architecturally significant requirements,
including their measurable, testable completion criteria.

 • Review the architecture. If it is not documented, glean insights from team
knowledge, source code, and the issues being tracked.

 • Make reviewing architectural concerns a regular part of iteration/sprint
reviews and retrospectives.

 • Use your knowledge of architectural risk to guide automated analysis of the
source code.

 • When fixing a defect or adding a new feature request, look beyond the imme-
diate implementation to see if there are longer-term design issues leading to
technical debt.

Look for the presence of technical debt during these activities and respond by
including them in the technical debt registry.

For Further Reading

If you are not familiar with the concept of software architecture, start with the
 Wikipedia definition (2018). Ian Gorton’s book Essential Software Architecture
(2006) is a fast and easy read, and if you are coming from an agile perspective, Simon
Brown’s Software Architecture for Developers (2018) is for you. For a more thorough
treatment of the topic of software architecture, our colleagues at the Software Engi-
neering Institute have evolved over 10 years the reference opus Software Architecture
in Practice (Bass et al. 2012). This book also provides more information about qual-
ity attribute scenarios and architectural tactics. Just Enough Software Architecture:
A Risk-Driven Approach focuses on the risks that prevent development progress
(Fairbanks 2010). A continuous architecting approach to system development and
sustainment is essential for avoiding unintentional technical debt.

The Architecture Tradeoff Analysis Method (ATAM) is a method for evaluat-
ing software architectures relative to quality attribute goals to expose architectural

From the Library of Jan Wielemans

ptg47401904

Chapter 6 Technical Debt and Architecture102

risks that could potentially inhibit an organization’s achievement of its business
goals (Clements et al. 2001). Knodel and Naab (2016) introduce architecture evalu-
ations in the context of continuous architecting. Designing Software Architectures,
by Humberto Cervantes and Rick Kazman (2016), provides more information about
lightweight analysis techniques during design, and the appendix contains tactics
questionnaires.

An architecture description language (ADL) could be used to describe a software
architecture. The appendix of Documenting Software Architectures: Views and
Beyond by Clements and colleagues (2011) provides an overview of AADL, SysML,
and UML. These three ADLs are representative of the range of formal or semiformal
descriptive languages, textual and/or graphics languages, and associated tools. The
benefit of using an ADL is the support it provides in design and analysis activities.

Design Rules introduces design structure matrices to understand dependen-
cies between product elements and how to decouple them for effective evolution
(Baldwin & Clark 2000). Researchers and tool vendors have applied the ideas from
this book to software to provide tool support. For example, Tornhill (2018) and
Kazman and colleagues (2015) put such an analysis in the context of technical debt.

Ford, Parsons, and Kua (2017) introduce the idea of an executable “fitness func-
tion” in their book Building Evolutionary Architectures. This is one way of trying
to spot architectural debt when it occurs, though only some kinds of architectural
constraint are amenable to being checked like this.

From the Library of Jan Wielemans

ptg47401904

103

Chapter 7

Technical Debt and
Production

In this chapter, we explore technical debt that arises in the process of putting software
in the production environment and into the hands of its end users. This process
includes the build and integration, testing, deployment, and release aspects of soft-
ware development. These release activities involve essential software artifacts that
can cause technical debt or that can be subject to technical debt themselves.

We explain how to recognize technical debt in the infrastructure of the release
activities. We again illustrate our lightweight analysis technique to assess technical
debt in such artifacts and to ensure traceability so that misalignments between these
artifacts do not introduce technical debt. We focus on automated testing, continuous
integration, and deployment aspects.

Beyond the Architecture, the Design, and the Code

In Chapters 5, “Technical Debt and the Source Code,” and 6, “Technical Debt and
Architecture,” we looked at how technical debt appears in the traditional activities
we usually associate with software development: code, design, and architecture. But
technical debt can also appear in the steps that deliver the software to its end users,
wherever there are code and structural considerations.

How does software get into the hands of users? Industry practices vary widely.
Software can be embedded in another physical product, such as your TV monitor;
it can be delivered to individual computers or devices, such as your laptop or cell
phone; or it can run in large operations centers using the SaaS paradigm (Software
as a Service).

From the Library of Jan Wielemans

ptg47401904

Chapter 7 Technical Debt and Production104

SaaS has been undergoing a big transformation lately, evolving from software
development teams throwing candidate software releases over the wall to operations
teams, to more integrated approaches, nicknamed DevOps, for development and
operations.

Just as processes used by the software industry vary, so does the terminology they
use to describe this tail-end process. We will begin by defining a few terms.

We use the term release for the part of the process that brings completed code to
a running, operational system in the hands of its end users. So, release is the process
that brings the software into production, as shown in Figure 7.1.

The release part of the process encompasses the following four activities:

 1. Build: Creating the executable software

 2. System test: Validating that the software is ready for use

 3. Deployment: Bringing the software (and data) to the place of use

 4. Turn it on: Making the software operational

Release occurs at various time increments—from years, to months, to weeks, to
more or less continuously. Continuous integration and deployment enable develop-
ers to push a code change through the release activities immediately into production.

Feature

Request

Requirements Architecture Design Development Test Delivery

CODE COMMIT

TEST

CODE
REVIEW

CONTINUOUS
INTEGRATION

QA

CONTINUOUS
DELIVERY

TEST

DOCS

PROCESS

FEEDBACK

CYCLE

TI M E

NEED

NEED

Design App

data

process

FeatureReq Code

Test

Staging

Production

E
nv

ir
o

nm
en

ts

Release

Release

Release

DEVELOPMENT SECURITY OPERATIONS BUSINESS OTHER

Stakeholders

Figure 7.1 Release pipeline

From the Library of Jan Wielemans

ptg47401904

Beyond the Architecture, the Design, and the Code 105

Continuous integration involves rebuilding the software when any significant change
occurs and is practiced throughout the industry. Continuous integration involves
integrating artifacts on every change, notifying the team immediately of success or
failure, and requiring issues to be fixed before moving forward. Continuous deploy-
ment involves deploying changes into production as soon as possible, to make the
software operational.

These activities are supported by tools, and there are many good ones to choose
from today. These tools are usually driven by programs called scripts that are written
in various languages, including operating system shell scripts.

Because of all this script-driven automation, technical debt in production is not
very different conceptually from technical debt in code or software architecture. You
can think about your infrastructure as a complicated codebase. Infrastructure as
code refers to the process of managing the IT infrastructure through automated pro-
cesses. All assets are versioned, scripted, and shared, where possible.

All the three project examples we’ve been examining (the three moons of Saturn)
have a significant production element: They have an operations team. Atlas uses a
DevOps approach, Phoebe is an agile shop, and Tethys uses a more traditional
method. Here is an example from the Phoebe project about its build automation tool,
called Make, which automatically builds executable programs from source code:

Make’s dependency calculation is taking 20% of the time for an incremental build, and we

need to speed things up. We had been able to make some small performance improvements

in the past but are no longer able to continue with such workarounds.

So, the Phoebe project has both the software that is the product, which is
“shipped,” and the software that helps build the software, which is the product.
 Previous chapters discuss Phoebe’s software product; here we consider the soft-
ware that builds the product. For shrink-wrapped software (what is in the box or
the installer you download) or embedded software, the distinction between the
software that is the product and the software that helps build the product is pretty
 obvious. For SaaS, it is a little trickier. But this software still impacts what the end
user experiences.

There are several important differences between software products and software
used in production:

 • Different tools: The production phase often employs a chain of several tools,
using plugins to refine and specialize them; this is an extension of the tradi-
tional build tool chain of compilation/linking and not a fundamentally differ-
ent animal.

From the Library of Jan Wielemans

ptg47401904

Chapter 7 Technical Debt and Production106

 • Different languages: The languages used in production software are often not
known for their legibility and maintainability.

 • Different people doing operations or different maturities of the personnel
involved: These differences can lead to cultural issues; some organizations do
not treat the infrastructure code as first-class software.

 • Different degrees of automation: Often some manual steps need to be
performed.

And above all, greater degree of difficulty to test before putting software into
 production. This was easy in the shrink-wrapped context, but much harder in an
SaaS environment.

In developing the codebase, the language often provides some conceptual integ-
rity, especially when using well-known frameworks. For example, you may have all
your application code written in JavaScript, using the MEAN stack (MongoDB,
Explorer.js, Angular.js, Node.js), and manage it in Git repositories. In contrast, the
tools in the release process may be more scattered and may have evolved organically
(as opposed to being well designed), sometimes in the hands of people with a lesser
degree of software engineering sophistication. Version control may have a 1990s feel,
or it may not be done at all.

The field of infrastructure and its code is not as mature as the software develop-
ment field, despite the availability of many tools to assist in the process, so it is more
difficult to have a top-down design. There is little in the way of standard practices,
guidelines, or education available. In large systems, the tool chain will also contain
elements to monitor the behavior or health of the running system, collect metrics to
allow reflection on the system, react automatically to specific misbehavior, and guide
future evolution.

Build and Integration Debt

Technical debt in build and integration appears in two ways:

 • Imperfect or suboptimal design and coding of the build scripts themselves:
Build scripts are, in effect, code, sometimes supported by special code embed-
ded in the application under development.

 • Misalignment between the build dependencies and the actual code: As the
software rapidly evolves, new components may not be backward compatible.

From the Library of Jan Wielemans

ptg47401904

Build and Integration Debt 107

Principle 7: All Code Matters!

1000101010001111000110110001010100011110001101
010100001010000110100010010100001010000110100010

1000101010010001011010110001010100100010110101

1000101010001111000110110001010100011110001101
010100001010000110100010010100001010000110100010

1000101010010001011010110001010100100010110101

1000101010001111000110110001010100011110001101
010100001010000110100010010100001010000110100010

1000101010010001011010110001010100100010110101

1000101010001111000110110001010100011110001101
010100001010000110100010010100001010000110100010

1000101010010001011010110001010100100010110101

All code matters: the code that goes into unit tests, the code you decide not
to include in this release but will include in the next release, the build scripts
that deploy the software, the generated code that allows you to take advan-
tage of frameworks, and the script that automates running the test, integrates
the functionality, and deploys it to the production environment for release.
Dependencies between these artifacts become barriers rather than enablers
when the system is being refactored or evolved.

Developers write code within their development environment that might
be deployed on specially provisioned virtual machines or simply on their own
computers. At the various stages of deployment, the test, staging, and produc-
tion environments are provisioned to match the expected infrastructure con-
figuration. These environments are independent, prone to change, and easily
manipulated. Without careful management, they will diverge.

Technical debt appears within each of these environments and as a conse-
quence of misalignment among them. One example is a bug found in produc-
tion that cannot be reproduced in development. Even rolling back development
code to the production version doesn’t allow it to manifest. It may be an issue
with updated packages or the operating system in the development environ-
ment. We will consider how technical debt accumulates in each of the build
and integration, testing, and deployment aspects of production.

Build automation keeps builds consistent. Build scripts build the product but are
often used for other tasks, such as running unit tests, packaging binaries, and gen-
erating project documentation, test coverage reports, and internal release notes. The
absence of build infrastructure is a source of technical debt because it increases the
setup time when new developers join the team or a new machine is installed.

Automation and continuous integration require an investment in infrastructure
and the ramp-up time to design, develop, and use the continuous integration server.
Building such infrastructure involves architecting and implementation and hence can
introduce technical debt—much as described in Chapters 5 and 6.

From the Library of Jan Wielemans

ptg47401904

Chapter 7 Technical Debt and Production108

Doesn’t Embracing DevOps Help Eliminate Technical Debt?

Well, yes and no! We have explained that production infrastructure is not
immune to technical debt. And in the context of continuous integration and
continuous deployment, DevOps is positioned as an enabler to reduce, if not
eliminate, technical debt. There is definitely some truth to this claim. Manual
analysis, testing, and integration are not only error prone and incomplete
but also have issues of scalability, reusability, and correctness as the software
evolves. Automation helps standardize the artifact submission process and
provides consistent results, improving integration consistency and speed.
Continuous integration goes a step further, using a build server to integrate
artifacts on every change and enforce quality standards.

The process of adopting automation for these practices and moving to
DevOps helps teams uncover technical debt and inconsistent processes and
assess what they can eliminate with automation enabled by DevOps.

There are many positive outcomes in automating the production pipeline
with a DevOps model including the following:

 • Higher productivity due to automating routine, error-prone, and time-
consuming tasks

 • Incorporating analysis tools

 • Quicker delivery and faster resolution of problems

 • A continuous software delivery environment

 • Stable operating environments

 • Improved communication

 • A more stable product (eventually)

As the capabilities of automating testing, integration, and conformance
tools improve, DevOps will deliver on its promise of achieving faster and
more reliable software delivery. However, it is not a magic solution to resolv-
ing your technical debt. In this chapter, we have discussed different ways that
technical debt can exist in the production environment. But in addition to
those, there are kinds of technical debt that an automated pipeline will not
be able to detect and have a solution for. For example, architecture decisions
can be tough to automate and monitor. A DevOps pipeline, no matter how
smooth the automation process, will not tell you whether you have selected
the UI framework that best fits the user interaction you need to implement.
While you can often push patches and upgrades to run-time, these can actually

From the Library of Jan Wielemans

ptg47401904

Testing Debt 109

Testing Debt

Technical debt in testing appears in three ways:

 • Imperfection or suboptimal design and coding of tests: Test suites are, in
effect, code, and they are sometimes supported by special code embedded in
the application under development. Large sets of automated tests may not
have a clear purpose; when they fail, something is probably wrong, but it is
unclear what artifacts contributed to the failure and why.

 • Misalignment between the tests and the actual code: As software evolves
rapidly, new tests may be missing or may test an older interpretation of the
requirements. Very fine-grained tests introduced early in development, espe-
cially with mockup software, become a nightmare to maintain as they create
complex webs of code around the production code; one small change might,
for example, cause 60 tests to fail.

 • Challenges of SaaS contexts: Development, testing, and production environ-
ments can become misaligned. If your developers use version X, your continu-
ous integration system version Y, and your production servers version Z, then
your tests aren’t testing the right thing, and your developers might not know
about it. Or code that worked perfectly during development might fail when
deployed to the test infrastructure.

Here is an example of a technical debt item from the Tethys project, whose devel-
opers have grown frustrated because multiple tests have a similar purpose, and other
tests override each other:

Page_test_runner and benchmark_runner_test are duplicates. The duplication is a

consequence of trying to expedite a request by the controls team. When the actual test code

got written, they did not realize that the test got dubbed. These test codes should be merged

and refactored, as the code also includes a page setup test that can be overwritten.

accumulate technical debt rather than fix the problem at its source. An auto-
mated tool chain will not help you detect major re-architecting that may need
to be done, as the software will continue to work.

DevOps is one of the practices in improving software development quality
and timeliness and can be an effective approach for intentional management
of technical debt. However, DevOps does not replace a holistic technical debt
management practice. There is no free lunch!

From the Library of Jan Wielemans

ptg47401904

Chapter 7 Technical Debt and Production110

This example demonstrates that an organization needs a deliberate strategy for
managing technical debt not only for development but also for testing and produc-
tion. Tests need to be designed and aligned to their purpose, implemented following
sound coding practices, and executed in alignment with the functionality and attrib-
utes they are meant to test.

Infrastructure Debt

Technical debt in deployment appears in two ways:

 • In the structure of the operational system: This may include the lack of
“observability” of the system, which may be referred to as monitoring debt.

 • In scripts: This may include scripts that enact the deployment of the code, the
data, and the updates on the operational system.

This is infrastructure debt hiding in infrastructure code. A task that must be
performed manually, again and again, by the staff on the operational system is an
example of such infrastructure debt. The operations team must continuously pay the
recurring interest, while dealing with significant risks.

The lack of verification of deployment scripts is a source of technical debt. It
is essential to check that the scripts are compatible with the architecture to avoid
inconsistencies between development, testing, and production environments and to
minimize risk.

The Case of Technical Debt in the Production of Phoebe

Previous chapters describe how Team Phoebe identified technical debt items in the
code and the architecture. Let’s continue with the Phoebe example to see what addi-
tional information the team can uncover by analyzing the infrastructure. Treating
infrastructure as code, team members again follow the steps of technical debt anal-
ysis (described in Chapter 4, “Recognizing Technical Debt”). In the first iteration,
they define key business goals. The development team has already looked at pain
points related to two of the business goals—“Create an easy-to-evolve product”
and “Increase market share”—from code and architecture perspectives. Another
related business goal is “Reduce time to market.” There is growing concern that

From the Library of Jan Wielemans

ptg47401904

The Case of Technical Debt in the Production of Phoebe 111

velocity keeps dropping. It takes forever to implement even a simple change and test
it. The developers turn their attention to improving the build time and test
infrastructure.

Improve the Build Time

As Team Phoebe evaluates possible solutions for improving performance for Make’s
dependency calculation, team members consider the consequences of technical debt.
Should the team continue to incur more debt, pay it off at the expense of some per-
formance, or make a partial payment on the debt while still meeting their perfor-
mance goal?

The sample technical debt item in Table 7.1 shows the team’s analysis of the build
infrastructure to get insight into the maintainability of the build and integration
scripts.

Improve the Test Infrastructure

Team Phoebe would also like to reuse new test helper modules for a legacy test
framework. While the development team has been migrating its integration tests to

Table 7.1 Techdebt on build infrastructure

Name Phoebe #500: Improve build time

Summary Make’s dependency calculation is taking 20% of the
time for an incremental build. The team is considering
three alternative solutions and the trade-offs involved in
incurring technical debt to optimize performance.

Consequences Slowing build time and turnaround time for feedback.

Remediation approach I tried three approaches:

1. extra_cflags on the cc compiler command,
separate precompile header command

2. override cflags per rule to add -include for source
files and -x for precompiled header files

3. base_cflags with normal flags, set cflags to $base_
cflags -include, override it with $base_cflags -x for
precompiled header files

1 is messy but fast, 2 is cleaner but a lot slower (due to
cflags per object file), and 3 is cleanish and fast.

Reporter/assignee Build team

From the Library of Jan Wielemans

ptg47401904

Chapter 7 Technical Debt and Production112

the new test framework, there have been two parallel test helpers to maintain. This
code duplication is a source of technical debt and requires team members to make
changes in two places. They often forget, which leads to unintended drift between
the two frameworks.

The remediation approach the team is taking allows the legacy test framework
to reuse the new test framework’s helper modules, which are essentially a cleaned-
up port (better documentation, linted, obvious errors fixed). The sample technical
debt item in Table 7.2 shows analysis of the test infrastructure to get insight into the
maintainability of the test framework.

Table 7.2 Techdebt on test infrastructure

Name Phoebe #501: Improve test infrastructure

Summary While DevTeam has been migrating its integration tests
to the new test framework, there have been two parallel
test helpers to maintain.

Consequences This code duplication is a source of technical debt and
requires team members to make changes in two places.
They often forget, which leads to unintended drift
between the two frameworks.

Remediation approach Reuse the new test framework’s helper modules. The
goal isn’t 100% code reuse between the old and new test
frameworks but 80–90%.

The test methods that remain are here for three reasons:

 • When ported to the new test framework, they were
refactored into different modules, and legacy tests
need to be updated to load new modules.

 • Navigating the page in the old test framework is
hacky and has been cleaned up in the new test frame-
work, so the tests won’t ever share implementations.

 • Subtle refactoring changes make the new implemen-
tation fail certain tests. This test failure should be fol-
lowed up by using the old implementation and then
refactoring once all tests have been migrated.

Reporter/assignee DevTeam developers

From the Library of Jan Wielemans

ptg47401904

For Further Reading 113

Service the Production Debt

After inspecting the infrastructure, team members have added a few more technical
debt items to the registry. These items pertain to the build and test infrastructure.
They will need to consider trade-offs with other system properties and understand
the consequences of partial payment of the debt. They also need to examine the leg-
acy test framework and assess how the debt will change over time as the developers
migrate tests to the new framework. We will say more on these topics in Chapter 9,
“Servicing the Technical Debt.”

What Can You Do Today?

At this point, it is important to identify the software that helps you build the soft-
ware that is the product and start treating it as first-class code. These activities may
be useful at this stage:

 • Put it under configuration management.

 • Document it (see Chapter 12, “Avoiding Unintentional Debt”).

 • Integrate its operation into your overall development process.

 • Architect for ease of deployment, observability, and automated processes.

 • Analyze the code and the design of the infrastructure for the presence of
 technical debt as you would for the product.

You need to identify steps that require manual intervention, that are error prone,
and that could be automated. You also need to integrate elements and tools to
observe software in development and operation (static analysis, monitoring, logging)
to obtain information about its architecture health and run-time behavior that can
inform priorities and guide future decisions.

For Further Reading

Andrew Clay Shafer (2010) came up with the concept of infrastructure debt hiding in
infrastructure code, and Infrastructure as Code is actually the title of a book by Kief
Morris (2016).

In their novel The Phoenix Project, Gene Kim and coauthors (2013) give a great
illustration of the impact of technical debt on infrastructure and the notion of
DevOps. In Site Reliability Engineering, Beyer and colleagues (2016) emphasize that

From the Library of Jan Wielemans

ptg47401904

Chapter 7 Technical Debt and Production114

thoughtless automation in the production and testing infrastructure will create more
problems than it solves.

To learn more about DevOps, you can find many resources that provide practi-
cal guidance. The DevOps Adoption Playbook, by Sanjeev Sharma (2017), provides
guidance on implementing DevOps in large organizations. The DevOps Handbook,
by Gene Kim and Patrick Debois (2016), is another such industrial reference on what
is good DevOps. For a software architect’s perspective on the DevOps movement, see
the book DevOps by Len Bass and colleagues (2016).

On documentation, especially documenting the allocation views of the architec-
ture, see Simon Brown (2018) and Clements and colleagues (2011). The deployment
and install views describe the mapping of architecture elements to the computing
platform and production environment.

From the Library of Jan Wielemans

ptg47401904

Chapter 8: Costing the Technical Debt

Chapter 9: Servicing the Technical Debt

PART III

Deciding What Technical
Debt to Fix

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

117

Chapter 8

Costing the Technical Debt

Despite the adjective technical, technical debt is ultimately an economic issue. Your
strategy for managing it revolves around how many resources to spend and when to
pay back the debt. In this chapter, we shine an economic spotlight on technical debt
items to reveal the information you need to make decisions about how to service your
debt. We explain how to estimate the remediation cost and the resulting cost savings
when you reduce the recurring interest.

Shining an Economic Spotlight on Technical Debt

In general, the key driver for making decisions about a software project is maximiz-
ing value while minimizing costs. This is also the case with technical debt and the
decisions you make about whether to do something about it, as well as how much
and when. At some point in the life of a software product, you must be able to calcu-
late costs of doing whatever you need to do with technical debt items. This involves
computing or estimating the cost to carry and to eliminate the debt.

Here is how Team Atlas weighed the value of reducing recurring interest against
the cost of paying the debt:

Running a static checker, the Atlas team found 34 clones of a certain piece of code.

They noticed the issue because an inconsistent modification to only 32 of the clones had

triggered a bug that was hard to find. The proposed refactoring to service the debt consists

of encapsulating the logic of these 12 lines of code in a single method and then replacing

all the 34 clones by an invocation of this method. The cost? About one hour. Oh, wait, they

probably need to do some regression testing to validate that they have not affected the

From the Library of Jan Wielemans

ptg47401904

Chapter 8 Costing the Technical Debt118

logic of the whole system. Oh, wait, they do not have unit and regression tests for several of

the affected locations. Adding the tests, running the tests in the “before” version, and then

running the regression tests will add another two hours.

The bottom line is that eliminating this technical debt item requires one day of
work. The team determines that the benefit of reducing the debt by tracking down
these bugs is worth the cost of the fix.

If you take a technical debt item from your registry, you can estimate the total
effort involved in eliminating the associated technical debt. The associated debt is
what we have called the current principal, and it includes the cost of changing the
code or design option and all the accruing interest—that is, undoing the modifica-
tions and workarounds that piled up on the not-quite-right code, design, or produc-
tion infrastructure.

Let us assume that you have to break apart a class into two distinct classes. If
you’ve waited very long to repay this technical debt item, a lot of other code has
been written that depends on the class. You will need to revisit and modify all these
places in the code. And these modifications may have further consequences on other
dependent code. An original naive estimate of requiring one day to reorganize the
class rapidly grows to three days of work to deal with all the ramifications of accrued
interest.

A simple return on investment (ROI) calculation for debt reduction compares the
benefit of reducing the recurring interest with the cost of paying the current princi-
pal and accruing interest (remediation cost).

In the technical debt timeline we introduced in Chapter 2, “What Is Technical
Debt?” you need to know the cost of the technical debt you have in your system and
understand when you will reach the tipping point (see Figure 8.1). Refining technical
debt items will enable you to estimate the cost and prioritize actions to take.

Time

Occurrence Awareness Tipping Point Remediation

T1 T2 T3 T4

BLISSFUL IGNORANCE SUFFERING FROM DEBT DEBT-FREE

GETTING VALUE OUT OF DEBT

Technical Debt Net Liability

Technical Debt Net Asset

TECHNICAL DEBT

Figure 8.1 Reaching the tipping point

From the Library of Jan Wielemans

ptg47401904

Refine the Technical Debt Description 119

Shining an economic spotlight on the technical debt items involves doing the
following:

 • Refining the technical debt description to identify the impacted and related
software artifacts (code, tests, build scripts, and so on)

 • Using the artifacts to calculate the cost of remediation

 • Using the artifacts and consequences to calculate the recurring interest

Let’s look more closely at the technical factors of principal and interest.

Refine the Technical Debt Description

When you or your manager, client, or CTO asks, “How much technical debt do we
have?” the real questions are “How much would it cost to fix the issues now?” “What
benefit would it have?” and “How much impact would it have if we didn’t fix it
now?” These questions about the future do not consider only the code, the architec-
ture, or the production infrastructure; they assume that when the issue is fixed, all
the associated tasks will be fixed. Any calculation of technical debt should assess it
from such a holistic perspective.

Holistically automating the entire decision-making and resource allocation process
is not possible, and automated static analysis tools cannot make these calculations for
you. You can identify issues and make design trade-offs for fixing them, but assessing
issues as technical debt and managing them as such requires building an end-to-end
economic argument. Sometimes the fix is a trivial code change, even if you find the
issue during an architecture analysis; other times remediation requires a re-architecting
effort, even though the technical debt item was discovered through static code analysis.

Looking back at the Phoebe agile shop that we studied in Chapter 6, “Technical
Debt and Architecture,” the large negative-letter spacing issue was initially addressed
with a patch, completed with two hours of a developer’s time. That is when the debt
started accumulating because the team initially failed to assess the architecture, in
addition to the code, until one of the developers sensed that the system required a
more involved analysis and fix.

So, one of the developers entered a technical debt description, an excerpt of which
is shown here (see Chapter 6 for the full description):

Name Phoebe #421: Screen spacing creates unexpected crashes due to API
incompatibility.

Summary The source code uses a very large negative letter spacing in an
attempt to move the text offscreen. The system handles
up to –186 em fine but crashes on anything larger.

From the Library of Jan Wielemans

ptg47401904

Chapter 8 Costing the Technical Debt120

This is a critical issue that impacts multiple fronts: The software crashes leave
the users frustrated, and the negative spacing causes integer overflow, which creates
a security vulnerability and leaves the software brittle. The developers have patched
the code, but they have not yet identified the root cause, leading them to believe the
fix may be more complicated.

Table 8.1 shows the refinement of the technical debt description and identifies the
concrete software artifacts related to it. Although Team Phoebe recorded the tech-
nical debt item during an architecture analysis, team members now know that the
code, architecture, and production infrastructure are related to each other, and it is
not always easy to tease them apart. One or the other may be the starting point of
the analysis and may trigger reflection on other related aspects. When team members
plan remediation, they need to consider how changes to one artifact could impact
the others.

The driving analysis questions guide the developers in tracing symptoms such as
crashes to the codebase. (Recall the questions for the “Increase market share” busi-
ness goal in Chapter 5, “Technical Debt and the Source Code.”) For example, in the
context of this particular issue, the team sees that the negative out-of-bounds prob-
lem creates a crash in three components. The team identifies the cause in the frame
renderers and an internal dependent component. Team members recognize through
architectural thinking that this error is being injected externally to several different
areas in the code; hence, they need to understand the influence of the external com-
ponent on the code to develop an appropriate remediation approach.

This refinement exercise guides developers in assembling the analysis of code,
architecture, and production that we discussed in Chapters 5, 6, and 7, “Technical
Debt and Production.” As teams become more sophisticated, they can link their
development environments and autofill some of these fields with the relevant infor-
mation. The goal is not to trigger analysis paralysis but to be aware of the added
costs related to accruing interest and to make the changes so the system is production
ready. We strongly underscore the benefits of a robust integrated configuration man-
agement and version control environment. You can use these tools to refine your tech-
nical debt items and manage them throughout the software development lifecycle.

Table 8.1 What and where is the debt?

Name Phoebe #421: Screen spacing creates unexpected crashes
due to API incompatibility

Affected components UIsetuplayer, transparency layer, UILogic

Affected code Isolated to the frame renderers the text is fed into

Dependent components LayoutTests, external web component

Other analysis data 40 reports from 7 clients in 10 days

From the Library of Jan Wielemans

ptg47401904

Calculate the Cost of Remediation 121

Calculate the Cost of Remediation

Table 8.2 lists the activities for remediating the debt from source code through unit tests
for Phoebe’s unexpected crashes. The cost of fixing the quality problems comprises the
current principal and the accrued interest. The team adjusts these costs by an uncer-
tainty factor and the cost to test the fix. Accounting for uncertainty provides team
members a mechanism to express their confidence in their ability to localize changes, so
they can determine how much they need to account for unexpected ripple effects.

Team Phoebe analyzed the issue and decided to write a wrapper to remediate
the problem. The developers refined the technical debt description to reflect this
decision:

Remediation
approach

We could just fend off negative numbers near the crash site, or
we can dig deeper and find out how this –10000 is happening.
Code changes are trivial but distributed in the classes. That was
the mistake made with the patches. With Brant, we decided to
write a wrapper around the external web component.

Table 8.2 Cost of remediation

Remove Technical Debt
Retrofit Other Areas of
Software

Architecture
(design and
analysis)

The real cost was finding the
dependency to the external
web component and the
existing patches.

In a later release, we can just
remove the patches. Trivial.

Code Write a wrapper around the
external web component. We
estimate one-half day.

A bunch of debug code needs
to be cleaned, though, like
GetLastError() following the
UIFrame calls. These should now
return null, too. Maybe spend
another half day to ensure cleanup.

Infrastructure
(test)

Write new test for the
wrapper. One-half day.

Run the previous tests to ensure
that the fix and removed patches
resolve the problem. One-half day.

Uncertainty
multiplier for
propagating issues

Hopefully none as we were able to localize the fix.

From the Library of Jan Wielemans

ptg47401904

Chapter 8 Costing the Technical Debt122

The artifacts that constitute the debt (the architecture, code, and infrastructure)
identified in Table 8.1 provide input into the cost of remediation.

With this information, the cost of the remediation becomes clearer, but Team
Phoebe needs a little more information to weigh this decision against the benefit
of removing the recurring interest. Remember that team members already patched
the software several times in the local sites and then figured out that this was not
a routine bug but rather technical debt. So now they have to consider the trade-off
between the quick solution of patches (recurring interest) and fixing the software
properly (paying off the principal).

Calculate the Recurring Interest

This next step is to calculate the resulting benefit of reducing the recurring interest.
This requires understanding the nature of future changes and putting some quasi
values around them. Table 8.3 shows the factors involved. You need to know the con-
sequences of continuing to carry the existing debt so you can weigh them against the
consequences of your strategy to remediate the debt (which may or may not pay off
the entire principal). The symptom measures and the artifacts identified in Tables 8.1
and 8.2 provide the information to assess the consequences of continuing to create
patches compared to the proposed remediation.

To make a simple calculation of the benefit, you look at only the cost saved from
no longer carrying the debt. This assumes that you completely pay off the principal
and eliminate the debt, so there will be no recurring interest. You know the cost of
living with the debt up to this point. You might base predictions about future costs
on an extrapolation of the past debt, the rework cost of anticipated changes to the

Table 8.3 Trade-offs of change

Carrying Debt Remediating Debt

Cost of future
change

Medium: Each patch costs
one-half day.

Low

Frequency
(adjust for
accumulating
interest)

High: Many sites use this
renderer, so they will also
experience the issue requiring
the patch.

High: Many sites use this
renderer; they expect a smooth
and secure experience.

Uncertainty
(adjust for
potential
propagating
issues)

High: Without rework, each
new function is messier and
messier.

Low

From the Library of Jan Wielemans

ptg47401904

Compare Cost and Benefit 123

system, or the growing gap between the state of the software and good software
engineering practices.

To make a more nuanced calculation of the benefit, subtract the recurring inter-
est of your remediation strategy from the cost of carrying the debt. This difference
becomes more important when you are contemplating a partial fix—reducing but
not eliminating the recurring interest.

Compare Cost and Benefit

Determining the ROI of the proposed remediation involves comparing the cost of
remediation with the benefit of the reduced interest. Team Phoebe refined the
description of the techdebt in their backlog to include the ROI of the remediation
approach:

Remediation
approach

ROI of remediation: High. The remediation cost is paid back in
reduced developer effort to patch and rework the software almost
immediately. There is less time spent considering the already
implemented multiple local patches at crash sites. Even if we get
only three or four more of these issues and continue with the
patch-locally approach, which we will, the architectural fix
pays off.

Comparing strategies for managing technical debt depends on understanding
both the probability and impact of future change.

In this example, we have explained how to refine the technical debt description
to include economic information by using consecutive analysis steps. In reality, this
is an iterative process throughout development. Filling in the details of where the
debt is found (refer to Table 8.1) can and should happen as developers discover or
take on the debt. They can supplement their efforts with tool-supported analysis as
well as architecture reviews. This supplemental analysis (for which we discuss several
techniques in Chapters 5, 6, and 7) should happen for issues that require substantial
changes. This analysis can be another task on the backlog with the goal of providing
further details.

Remediation requires a team to generate possible solutions and evaluate the alter-
natives and cost. Some items are simple fixes with known costs and can easily hap-
pen through local refactorings. Other items involve substantial changes and require a
design exercise and understanding of trade-offs—and maybe even several dedicated
iterations. These changes will likely resolve multiple technical debt items and other
issues that make them worth the time and effort. Finally, capturing the information

From the Library of Jan Wielemans

ptg47401904

Chapter 8 Costing the Technical Debt124

about the cost savings of the change requires knowledge of the business context as
well as team skill sets.

In the case of Phoebe, the backlog prioritization approach resulted in the team
getting tunnel vision, even after fixing the same issue a number of times. The
 situation—with the customer reports and the potential impact of the vulnerability—
became so disruptive that the team had no choice but to take an approach based
on design analysis rather than continuing the one-off patches. The information we
present about the artifacts in an organized way here happened as organic and oppor-
tunistic discussions and team members’ comments on the open issue in their project
issue tracker. An explicit focus on a technical debt item will signal that at some point,

Principle 8: Technical Debt Has No Absolute Measure—Neither for
Principal Nor Interest

Technical Debt DescriptionTechnical Debt Description
Principal: Large
Interest: Medium
 • Code
 • Architecture
 • Production

A mortgage, which is an example of financial debt, has defined principal and
interest from the beginning. Technical debt does not; it is tied to the current
state of the system, and principal and interest are tied to your intentions to
change the system in the future. Most attempts to give an absolute meaning to
the value or cost of technical debt will fail, but they do give some general indi-
cation of where to look for the debt.

Your system may have a potential for technical debt, but it will have actual
technical debt only if you have to evolve it. You may also decide to walk away
from your technical debt, and you can’t do this with your mortgage! So, tech-
nical debt has a value and cost relative to a point in time, based on potential
evolution scenarios. Its value and cost change as the system evolves and expec-
tations for future evolution change.

From the Library of Jan Wielemans

ptg47401904

Compare Cost and Benefit 125

the team may need to go through a trade-off analysis to remediate the debt. Not all
debt has equal impact. Some debt can be serviced locally during routine refactor-
ing exercises. A team will have to do more analysis when paying back debt requires
architecture-level changes.

With an analysis approach that costs all the impacted software development
artifacts and considers associated uncertainty with and without remediation, you
should be able to identify the technical debt items that have high cost consequences
today or that have low risk but high return in fixes and then allocate them to your
releases. However, software development is rarely so simple.

Technical Debt: More Than Simply Dirty Code
by Michael Keeling

Six months after releasing our software to the world, the WIRE team was in
trouble. Customer support requests were increasing. Four AM pages were fir-
ing far too frequently. Our velocity slowed to a crawl. As if this weren’t bad
enough, it was also quickly becoming apparent that pieces of our architec-
ture were not going to be able to handle the next major batch of features. On
the road to our first release, we purposefully, and occasionally accidentally,
accepted technical debt so we could ship our software sooner. Now we were
feeling the consequences of that debt. The question the team now faced was
“What are you going to do about it?”

Our first actions were purely tactical. We needed to create breathing room
to relieve pain and buy time to hatch a more strategically focused repayment
plan. We started by focusing on the greatest pain points in our system. We
fixed our monitoring dashboards, logging, and debugging tools so we could
diagnose problems faster. We reevaluated our alerting strategies to remove
superfluous pages. We fixed the most disruptive bugs. After a few months of
hard work, the pain lessened, people started getting a full night’s sleep again,
and morale began a slow ascent from its all-time low.

Things were looking better, but we had still not addressed the root cause
of our woes. The team’s velocity was still slow, and pieces of our architecture
still were not prepared to take us where our roadmap showed we needed to go
next. As time moved on, the business landscape also started to shift under our
feet. Components we thought were clean and well designed began unraveling
as our users found new and interesting ways to flex the system.

(continued)

From the Library of Jan Wielemans

ptg47401904

Chapter 8 Costing the Technical Debt126

We needed a strategic plan for not only repaying our technical debt but
also managing it better in the future if we were to continue delivering soft-
ware. To create this plan, we hosted a simple workshop. The software engi-
neers kicked off the workshop by showing where potential technical debt
might live in our architecture. One afternoon we measured potential debt in
our system by examining various code quality metrics, such as churn, concep-
tual design integrity, and defect data. Most of the metrics came from readily
available sources such as git logs. Next, our product manager shared the road-
map for the next three to six months. Starting with the highest-priority road-
map items, we worked together to determine which parts of the architecture
would need to be touched and how much effort might be required so we could
deliver each roadmap item.

By the end of the workshop, we had a technical debt repayment plan.
 Surprisingly, some of the worst-quality code would not be scheduled for
cleanup for another six months or more. As it turned out, though the poten-
tial technical debt in these components was high, they required few changes
over the next three to six months. Through our analysis we also learned that
it would be impossible to deliver some potentially important features beyond
the six-month time horizon if we didn’t start repaying some technical debt
right away.

Perhaps the greatest outcome of the workshop was that engineering and
product management had a shared strategic vision for paying down technical
debt. The conversation about debt shifted. Instead of complaining about bad
code or making excuses for slow velocity, the team now talked about positioning
the architecture so it could successfully carry us into the future. In addition, dis-
cussions about technical debt had elevated from pain to prevention. Our analysis
made the metaphor of “debt” concrete in a way everyone could understand. We
added new stories to our backlog to prevent us from taking on more technical
debt accidentally and adjusted the process to have more meaningful discussions
about design decisions that introduced potential technical debt.

Reflecting on this experience, I think the WIRE team was successful for a
few important reasons. First, we relied on data instead of gut feelings to find
pockets of potential debt, and we found simple, reliable ways to measure code
quality. Second, we collaborated with product management to understand
how our software system might need to change instead of simply fixing the
worst code. Finally, the team’s mindset shifted away from thinking of techni-
cal debt as something always to avoid toward using technical debt responsibly
to help us move faster.

From the Library of Jan Wielemans

ptg47401904

Manage Technical Debt Items Collectively 127

Manage Technical Debt Items Collectively

In the larger system of Tethys, team members waited two years to thoroughly ana-
lyze their technical debt. Even though they followed the technical debt identification
process to filter nonessential issues, they still came up with a list of about 200 tech-
debt items. This became rapidly overwhelming. The amount of debt they have esti-
mated far exceeds the available resources for several iterations. It may even exceed
the amount of effort expended so far to develop the system!

Bringing in an army of contractors or student summer interns to knock down
your technical debt is not going to resolve it. Making a large number of scattered
changes can introduce new defects and new items of technical debt. And the debt at
the architectural level is hard to parcel out into small bursts of activities. Refactoring
at this structural level may halt development for several weeks.

Development teams clearly need additional criteria to decide what to do about
a long list of technical debt items. A naive strategy of repaying them all one by one
does not scale up. More often than not, the team will have to treat the technical debt
items in reference to each other as they think about possible ways to restructure the
system to service the debt and the implications over time.

The problem is even more complicated. You cannot treat technical debt in isola-
tion from satisfying new requirements, adding new features, and other evolutions of
the system, and you cannot separate treating technical debt from correcting defects
and flaws in the system because they compete for the same resources: developers.
Remember the four categories of items you have on your backlog: features, defects,
architecture and infrastructure, and technical debt items (see the sidebar “What
Color Is Your Backlog?” in Chapter 4, “Recognizing Technical Debt”).

Figure 8.2 shows a backlog of product issues consisting of desired features, archi-
tectural elements, defect fixes, and technical debt items. As team members groom the
backlog, they identify and refine the top-priority issues, which become candidates
for tasks in the next release.

The decisions in prioritizing the backlog are challenging because of all the hidden
dependencies. Some features depend on elements of technical debt. Similarly, fea-
tures may depend on some architectural element. And the same is true for defects:
Their resolution may depend on some missing structural element, or they may be
linked to some technical debt items.

From the Library of Jan Wielemans

ptg47401904

Chapter 8 Costing the Technical Debt128

To determine whether to include a technical debt item or postpone it for sub-
sequent iterations while grooming backlog items, consider the answers to these
questions:

 • In what ways are technical debt items that are related to development of
 features visible to the customer?

 • What architectural decisions have an impact on technical debt?

 • What defects can be traced back to the consequences of a technical debt item?

 • Are any technical debt items blocking progress?

 • Do any technical debt items need further refinement?

If the answers reveal that a technical debt item has dependencies with other issues
on the backlog, then it becomes a higher priority to consider remediating it when

Next release

Insert items

Break down item

Delete obsolete items

To be refined

P
ri
o
ri
ty

Defects Technical

Debt

Features

Key

Architecture

Infrastructure

Figure 8.2 Grooming the product backlog

From the Library of Jan Wielemans

ptg47401904

What Can You Do Today? 129

working in this code for other reasons. How backlog issues concentrate in areas of
the code can be another factor in setting priorities. For example, code with high
defect rates or code that has been modified a lot in the past (assuming that the same
will be true in the future) could be symptomatic of technical debt and thus worth
prioritizing. If a technical debt item has no dependencies with other issues on the
backlog, it has potential to incur cost, though not for the moment or the foreseeable
future.

There is a clear distinction between approaches that help you identify techni-
cal debt and those that help you manage technical debt. We have already discussed
tools that help you assess your code. These approaches, such as SQALE or OMG’s
Automated Technical Debt Measures, create assessments of technical debt reduction
based on fixing all these issues and assigning an effort estimate to each line of code
to fix. These techniques can help you detect technical debt. However, they cannot
help you manage your technical debt throughout the software development lifecycle.
They are only part of the toolbox.

We will take up the challenge of servicing the debt in Chapter 9, “Servicing the
Technical Debt,” where we explain how to use information about costing debt to
resolve your technical debt during release planning and the delivery cycle.

What Can You Do Today?

At this point, it is important to calculate the technical factors of principal and inter-
est in the artifacts that they trace to. These activities may be useful at this stage:

 • Refine technical debt descriptions to identify the software artifacts at the root
of the debt and any other components affected by the debt. This will help you
calculate costs.

 • For identified technical debt items, estimate not only the cost to pay them (in
effort: person-days or person-weeks) but also the cost to not pay them (how
much will it slow current progress?). In making your estimates, include the
overall uncertainty associated with the cost of future change.

 • If you are not able to provide an actual cost, use a “T-shirt sizing” strategy: XS,
S, M, L, XL.

At the very least, you need to describe qualitatively the impact of any technical
debt item on productivity or quality.

From the Library of Jan Wielemans

ptg47401904

Chapter 8 Costing the Technical Debt130

For Further Reading

Cost can be measured very accurately post facto: Just ask your accounting division
to tally all the development costs, direct and indirect. For cost estimation, software
developers have moved away from using a direct monetary value. They use various
proxies—that is, point-based systems. Over the years we have seen function points in
the 1970s (Albrecht & Gaffney 1983; ISO 20926:2009), object points in the 1980s
(Boehm et al. 2000), use-case points in the 1990s (Alan et al. 2012), story points in the
2000s (Cohn 2006), and associated methods and tools to assist in making estimates
(Grenning 2002). These approaches come with specific ways to calibrate what a
“point” actually represents, so you can be consistent inside a development project
or—better—across multiple development projects in a given organization. When the
actual costs are known, it is also possible to use a cost-per-point or dollar-per-point
factor to help with planning.

Automated tools that have rules for finding code quality issues often have a default
value and a remediation strategy with an associated cost that you can tailor. Value
is often qualitative, such as high, medium, and low or the top-ten rules in a given
category. Costs for these more localized fixes are on the order of minutes or hours,
computed as a constant function per fix, an increasing function based on complexity,
or a base function for common infrastructure plus a cost per fix.

The Agile Alliance Technical Debt Initiative has developed guidelines for execu-
tives, managers, and developers. In particular, it proposes the Agile Alliance Debt
Analysis Model (A2DAM), which gives directions on how to estimate remediation
costs for known code quality violations (Fayolle et al. 2018).

From the Library of Jan Wielemans

ptg47401904

131

Chapter 9

Servicing the Technical Debt

Organizations are often perplexed by questions like “Do we have too much debt?”
“Which technical debt items should we remove?” and “Which project should we
close out because of technical debt?” In this chapter, we examine the paths you can
take to service your technical debt: eliminate it, reduce it, or mitigate it. Using the
technical debt descriptions in the registry and the technical debt timeline, we offer an
approach to help you decide which technical debt items you should service first and
which you can put off for later.

Weighing the Costs and Benefits

At this stage, you have a registry of technical debt items. You know what conse-
quences they could have on the future of your software project in terms of recurring
interest and remediation cost as you consider whether to carry or pay the debt.

What should you do about your debt? You might be tempted to answer, “Repay the
technical debt items, all of them, one by one and as fast as possible to avoid interest.”
This is what you might do with ever-increasing credit card debt. However, there are other
options to consider in managing your overall financial health. While it is prudent to elimi-
nate the most severe credit card debt, you would manage a car loan or home mortgage
differently. You might be more concerned with cash flow and want to continue making an
affordable fixed monthly car payment. Or you might be optimizing your overall financial
portfolio. Early in the life of a mortgage, the majority of the payment goes to interest,
so you might make additional payments that apply to principal. Later in the life of the
mortgage, you might redirect those additional payments to other investments since the
majority of payment goes to principal and the incentive to reduce interest is gone. Your
goals and the context of your situation will influence your decision.

From the Library of Jan Wielemans

ptg47401904

Chapter 9 Servicing the Technical Debt132

In software development, you have these and even more options to manage and
grow your technical wealth. Unlike with financial debt, you may not have to repay
any of your technical debt, or you might have to repay some but not all of it. You can
choose.

In deciding what to do, you need to consider the business case for debt reduction,
including the costs and corresponding benefits (see Table 9.1). You should evaluate
the benefit of reducing risk liability and recurring interest. You should also estimate
the opportunity cost of delaying the delivery of new features as you remediate the
debt and the cost of paying the current principal and accruing interest. Conversely,
the business case to incur or carry debt swaps these factors. The benefit becomes the
cost savings of carrying the debt along with earlier feature delivery. The cost becomes
the recurring interest and increased liability.

Understanding the costs and benefits of carrying versus remediating the debt
will give you a sense of where you are on the technical debt timeline introduced in
Chapter 2, “What Is Technical Debt?” Have you passed the tipping point so that the
cost of interest has become greater than the benefit of incurring the debt in the first
place? With the answer to that question, you can examine the technical debt items
in your registry and determine which technical debt items you should remediate and
which ones you can continue to live with. Weighing costs and benefits of the techni-
cal debt items in the registry will enable you to discuss and prioritize actions to take
to decide how to remediate the debt (see Figure 9.1).

Table 9.1 Costs and benefits of servicing technical debt

Cost Benefit

Current principal and accruing interest Reduced recurring interest

Opportunity cost of delaying features Reduced risk liability

Time

Occurrence Awareness Tipping Point Remediation

T1 T2 T3 T4

BLISSFUL IGNORANCE SUFFERING FROM DEBT DEBT-FREE

GETTING VALUE OUT OF DEBT

Technical Debt Net Liability

Technical Debt Net Asset

TECHNICAL DEBT

Figure 9.1 Reaching the remediation point

From the Library of Jan Wielemans

ptg47401904

Weighing the Costs and Benefits 133

Risk Exposure and Opportunity Cost
by Eltjo R. Poort

A realistic business case for technical debt reduction is an important tool to
put the risk and cost related to technical debt on the radar of the business
stakeholders who can do something about it. On top of recurring mainte-
nance and remediation costs, it should also include less obvious items such as
risk exposure and opportunity cost related to a specific debt item.

Risk and opportunity costs often have more impact than the recurring
maintenance and direct remediation costs. A technical debt item that might
lead to severe security risks will normally be remediated quickly even if the
cost of remediation outweighs the maintenance reduction. Think of out-
dated operating systems with known and unknown vulnerabilities that are
no longer patched: Migrating to a new OS might be expensive, but you just
cannot afford to risk a security breach. Conversely, an item that would at first
sight make very much economic sense to remediate as soon as possible might
still have to wait because you need the full development capacity to grasp an
opportunity to beat the competition by creating some new functionality.

Risk Exposure

The proper way to calculate the total expected cost of uncertain failure is
the well-known risk exposure formula: E(S) = p(S) × C(S), where p(S) is the
 probability of failure scenario S occurring, and C(S) is the cost incurred when S
occurs. By summing up the risk exposure E over all possible failure scenarios S
caused because of the technical debt, you come as close as statistically possible
to an accurate prediction of the expected cost of failure. In practice, technical
debt–related risk exposure can often be estimated only as an order of magni-
tude, but this level of estimation is often enough to make a business case.

I once encountered a situation in which a large transportation company
was running some of its core business systems on ancient mini-computers.
Spare parts were very hard to get, and the manufacturer had put severe limita-
tions on its maintenance contract. The organization in question had a hard
time making the business case for migrating the system to a modern, virtu-
alized, blade-based solution: The cost of the old platforms was so low that
the ROI for the migration looked negative. The risk of failure, however, was
substantial: A single missing spare part could potentially break the company
by disabling its core system for a few days. Including that risk exposure in the

(continued)

From the Library of Jan Wielemans

ptg47401904

Chapter 9 Servicing the Technical Debt134

technical debt interest leads to a completely different business case; in this
case, it pushed the company over the tipping point.

Opportunity Cost

The New Oxford American Dictionary defines opportunity cost as “the loss
of potential gain from other alternatives when one alternative is chosen.”

When a development team spends resources and time on reducing techni-
cal debt (upgrading, refactoring, repairing), the team will produce fewer end-
user stories during that time. Opportunity cost represents the business value
that those end-user stories would have yielded, as a way of accounting for the
scarcity of the team’s resources.

The literal term opportunity cost is seldom heard during technical debt
discussions, but it is often a major factor in deciding when to reduce the debt.
Whenever a stakeholder (for example, a product manager) says something
like, “Yes, we should do something about this debt, but we cannot afford to
do it now,” she is probably referring to the business features that end users are
waiting for or that have been promised by a certain deadline. In other words,
the opportunity cost of reducing the technical debt—the potential gain from
the alternative of delivering the business features on time—is higher than the
interest on the technical debt incurred during that period.

Release 1.1

Not repaying debt

Value

Repaying debt

Release 1.2

Opportunity cost

Key

User Story

Technical Debt

This diagram illustrates opportunity cost by comparing two scenarios: in
Scenario 1, the technical debt is not paid back, and in Scenario 2, the debt
is paid back in Release 1.2. The value curve at the top of the figure makes a
little dip in Scenario 2 (dashed line), compared to the continued growth of
Scenario 1. The figure shows that in Scenario 1, Release 1.2 introduces five

From the Library of Jan Wielemans

ptg47401904

Weighing the Costs and Benefits 135

new user stories, while in Scenario 2, there is time for only one user story
because a team has spent the rest of the resources on reducing the techni-
cal debt. The gap between the dashed line and the solid line represents the
opportunity cost of reducing the technical debt. (If you are wondering why
the dashed line goes down in Release 1.2, even though the team has added a
user story, I use the practical rule of thumb that existing business features in a
solution are subject to some type of value decay due to growing expectations
and demands from end users.)

A good example of opportunity cost in architectural technical debt reduc-
tion was presented to me by architects attending an agile architecture course
as part of an exercise. In their organization, a team had been developing
business process automation features for 4 years. The organization had kept
track of the labor cost savings attributed to that automation effort, which
amounted to 9 FTE (full-time equivalent positions) per year on average. The
platform the software was running on was due for a major overhaul because it
could not easily be made compliant with new European Commission regula-
tions (most notably the EU General Data Protection Regulation). During the
overhaul, the team would not be able to develop new features—which meant
an opportunity cost equivalent to 9 FTE per year, or 0.75 FTE per month
spent exclusively on the overhaul. This was a significant opportunity cost, but
in the end, it was determined that the total benefits, including the significant
reduction of the risk of noncompliance and reduced maintenance cost, out-
weighed the total cost (opportunity cost plus the cost of the overhaul itself).

The bottom line is that if you need to draw up a complete business case for
servicing a piece of technical debt, make sure you include not only the more
obvious principal and interest but also the risk and opportunity cost. This
will help facilitate a rational discussion about the impact of running risks
and delaying features and, therefore, help you put the decision in its business
context.

Let’s use the Phoebe project to demonstrate how to refine issues in the techdebt
registry impacting business goals (Table 9.2). Recall that Team Phoebe’s source code
analysis surfaced more than 10,000 violations. The team identified two major techni-
cal debt items: Phoebe #346: “Remove duplicate code” and Phoebe #345: “Remove
empty Java packages.” Reviewing the architecture to complement the code analysis
revealed a major risk in the design: Phoebe #420: “Locked-in architectural choices
in adapter/gateway separation.” Looking beyond the symptom of a reported defect

From the Library of Jan Wielemans

ptg47401904

Chapter 9 Servicing the Technical Debt136

about crashes to the root cause in the design yielded another techdebt: Phoebe #421:
“Screen spacing creates unexpected crashes due to API incompatibility.” Finally,
reviewing the production infrastructure surfaced technical debt items related to
building and testing: Phoebe#500: “Improve build time” and Phoebe #501: “Improve
test infrastructure.” Chapter 8, “Costing the Technical Debt,” provides the means
to understand the costs associated with these issues for the architecture, code, and
infrastructure, including testing.

However, there is still more work to be done in sorting out the backlog of issues
collectively, setting priorities, weighing costs and benefits, and planning releases that
allocate resources among new feature development, necessary design tasks, routine
defects to take care of, and technical debt items.

Paths for Servicing Technical Debt

We’ve discussed how technical debt repayment might play a role in what you can
deliver, considering a fixed expenditure budget. But the picture becomes more com-
plicated as you establish a roadmap for a project and define the content of future
releases. When deciding what to do in upcoming iterations, you need to consider all
the items on your backlog of things yet to do and their dependencies, including
 technical debt items.

If you want a system to evolve in a certain direction—for example, by adding a
new feature or service—you need to analyze which parts of the system will be affected
by this evolution. If those parts of the system contain technical debt items, you

Table 9.2 Phoebe techdebt registry

Techdebt Landscape
Remediation
ROI

Phoebe #345: Remove empty Java packages Code Low

Phoebe #346: Remove duplicate code Code Medium

Phoebe #420: Locked-in architectural choices
in Adapter/Gateway separation

Architecture Medium

Phoebe #421: Screen spacing creates
unexpected crashes due to API incompatibility

Architecture High

Phoebe #500: Improve build time Production Medium

Phoebe #501: Improve test infrastructure Production Low

From the Library of Jan Wielemans

ptg47401904

Paths for Servicing Technical Debt 137

need to look at the consequences of those items relative to the proposed evolution.
Will they prevent or slow the proposed new development? If yes, then maybe you will
need to repay them.

Any plan to repay some technical debt will affect the cost of possible scenarios
for evolving the system, which in turn may affect your decision to repay some debt or
evolve the system. The choice may well be decided by how much technical debt you
must repay before proceeding. This is true for any change, whether it be a request to
add a new feature, resolve a problem, invest in architecture, or even consider another
technical debt item.

Here is an approach for developing a plan to manage your technical debt while
you maintain and evolve your system:

 1. Identify the parts of the system that will be affected by a change.

 2. Determine whether technical debt items are associated with these parts of the
system.

 3. Identify the consequences of technical debt on this and possibly other changes.

 4. Estimate the cost of the debt repayment and add it to the cost of the change.

 5. Estimate the benefit of the debt repayment in enabling the development of this
and possibly other changes. (This can be difficult to do!)

This approach is contingent upon having a good grasp of which areas in the sys-
tem have more technical debt as well as a few maintenance and evolution scenarios
to compare potential outcomes. In addition, this approach is most practical when
technical debt signals problems with the design.

Remediating hundreds of little code-level “smells” and other code quality issues
might involve allocating a fixed percentage of resources to servicing technical debt.
This is analogous to adding a buffer of time within a sprint for fixing defects. A fixed
percentage gives a team the discretion to deal with code quality issues while control-
ling spending. In cases of extreme debt, you might allocate an entire sprint or two to
work on paying back technical debt.

Experienced teams consider aspects of evolution as they debate design options,
backlog grooming, and technology change. Conducting these discussions explicitly
for the technical debt items will improve a team’s understanding of the consequences

From the Library of Jan Wielemans

ptg47401904

Chapter 9 Servicing the Technical Debt138

and help members make decisions based on the benefit gained by fixing the related
technical debt items.

There are a number of decision points:

 • Determining whether the debt is potential or actual

 • Deciding to fix or not as new features are developed iteratively

 • Deciding whether it is time to mitigate the risk by remediating the debt
completely

 • Declaring victory by writing off the debt

 • Declaring bankruptcy

As your system reaches different points on the technical debt timeline, you will
need to revisit whether the path you have selected is continuing to serve you in servic-
ing your technical debt effectively. Let us look at these decision points along the way
in more detail.

Is the Debt Potential or Actual?

If you have been thinking of a fixed-rate mortgage as a typical example of financial
debt, then this is where the technical debt metaphor breaks down a bit. Your mort-
gage has defined principal and interest from the outset, and it’s included in the
paperwork you signed at the bank. Technical debt does not have defined principal
and interest from the outset; it is tied to the current state of the system, and the cur-
rent principal and interest are tied to your intentions for future changes. You might
have a potential for technical debt, but it will be actual technical debt only if you have
to evolve your system. You might also decide to walk away from your technical debt
by walking away from your system.

The first step for any of the paths you can take is to determine whether the debt
is potential or actual. If there is technical debt in parts of the system that do not
need to evolve and do not have unintended business impact, you can just ignore it for
now. In other words, the (long) list of technical debt items represents only potential
debt. The actual debt at any point in time depends on how the system will evolve in
the future. The more certain you are about the future evolution and the probability
of change, the more confidently you can identify the actual debt and the payback
strategies.

From the Library of Jan Wielemans

ptg47401904

Paths for Servicing Technical Debt 139

Should You Work on Debt, Feature Delivery, or Both?

Technical debt is an attribute of the state of a system at some point in time. While
you may have identified technical debt items, you cannot associate to them any
meaningful metric of cost until you look into the future and consider dependencies—
dependencies among the technical debt items and dependencies of future features
on them.

Principle 9: Technical Debt Depends on the
Future Evolution of the System

RELEASE 1: Technical Debt Is Low

RELEASE 2: Technical Debt Is Medium

RELEASE 3: Technical Debt Is High

TD

TD

TD

TD

TD

TD

TD

TD TD

TD

The value of debt as a strategic investment and its cost of remediation
depend on the changes to be made on the system from now on. It is because of
this principle that technical debt assessment and management are not one-time
activities. They are strategic software management approaches that you should
incorporate as ongoing activities for the development and sustainment of all
software-reliant systems.

From the Library of Jan Wielemans

ptg47401904

Chapter 9 Servicing the Technical Debt140

Team Atlas has some experience with this type of thinking:

The Atlas project met their goal of time to market with a successful product launch. There is

growing demand to evolve the system by adding a new feature. Designing the feature points

out some dependency on an element of technical debt in the system.

The value of the feature is the same, regardless of how it is implemented. But the
project may incur a different cost based on whether the team eliminates or mitigates
the technical debt. In this case, the system had some potential debt, but because it is
affected by a prospective evolution, it now has actual debt. Team members can deter-
mine the cost of repaying the debt and the cost of carrying each technical debt item,
as described in Chapter 8. They should include the opportunity cost and risk liability
in the decision to mitigate business risk.

The decision is determined by the cost–benefit trade-off of servicing the debt.
The cost to fix includes the cost of repaying the technical debt and the opportunity
cost of delaying features. The benefit includes the reduced recurring interest cost and
reduced risk liability. You can compare these costs to see where the project is on the
technical debt timeline and make a decision about repayment. Is the project still get-
ting value from carrying the debt and the recurring interest, and is the risk liability
still low? Or have you passed the tipping point, beyond which you are suffering from
technical debt? If the cost to fix is reasonable for the given benefit, then it is sensible
to proceed with the fix. If not, the debt may have passed the point where it is feasible
to remediate, and you should consider other paths, such as declaring bankruptcy.

It is rare that a system would evolve one feature at a time. A feature could also
depend on multiple technical debt items; many features together would therefore
implicate many technical debt items. When you potentially have multiple features
with different values, you may be able to combine them in different “packages” over
a release timeline and maximize value over time at a given cost.

There is some invisible internal value generated by refactoring areas of high
technical debt in the system, if it makes future evolutions of the system easier and
therefore cheaper. This forethought takes a longer view into the future of the system.
In planning the future of a project, you should include technical debt in the economic
reasoning of the business, not just the value of features visible to users. And you
must look at the benefit and cost of repaying or not repaying the debt that affects the
possible evolution scenarios.

Is It Time to Mitigate Risk?

If your system is already deployed in the field, your backlog very likely contains
defects that must be fixed urgently. These have negative value because they decrease
the system’s usability and they make customers unhappy, and customers or users

From the Library of Jan Wielemans

ptg47401904

Paths for Servicing Technical Debt 141

today can express their unhappiness widely through social media, which may affect
future sales. So, your business people want at least some of the defects fixed in the
upcoming release, and they may even be ready to compromise with some of the fea-
tures, maybe to the detriment of the architecture, which you know you really need
but for which the business people may not see much value. The Atlas project
 demonstrates this problem:

The Atlas project is slowing in productivity, and team members spend more and more time

fixing defects at the expense of adding new features. The time to fix the defects is increasing

as well.

Over time, risk liability may be the most important factor in the case for debt
reduction. Instead of pulling a feature off the backlog, you might consider a defect,
an architecture investment, or a technical debt item to be of higher priority to miti-
gate risk. That backlog item might depend on refactoring parts of the system to
eliminate other elements of technical debt.

The path is influenced by the cost–benefit trade-off of servicing the debt. The
total cost includes the cost of the backlog item, the cost of repaying the technical
debt, and the opportunity cost of delaying features. This approach provides the ben-
efit of eliminating the recurring interest cost of the technical debt and reducing risk
liability. This also supports the goal of lowering the probability and impact of failure
in a system that is growing in complexity.

Is It Time to Write Off the Debt?

In the case of debt amnesty, you write off the accrued technical debt and do not have
to repay it. Contexts for such a decision include developing a throwaway prototype
or concluding that a feature or product is a failure and no longer needed for various
reasons, such as a lack of customer interest or value. The written-off technical debt
item will continue to appear in your registry, but it doesn’t matter anymore because
there is no longer any recurring interest and hence no benefit in reducing its cost.

Is It Time to Declare Bankruptcy?

Bankruptcy happens when the part of the software system that contains the technical
debt item is no longer viable to support future development, and a complete rewrite is
needed. In some extreme cases, the whole system may have reached a point where a com-
plete rewrite is the only option. Bankruptcy is justified when the cost of rewriting the
system is lower than the cost of maintaining it (that is, the sum of recurring interests).

After restructuring the software and emerging from bankruptcy, a project may
elect to monitor technical debt more closely by implementing checks and tests that
must pass, and if they don’t, they break the build.

From the Library of Jan Wielemans

ptg47401904

Chapter 9 Servicing the Technical Debt142

The Release Pipeline

The different paths to servicing technical debt can be used individually and in
 combination to sort out and prioritize the product backlog and assign the backlog
elements to iterations or releases. Figure 9.2 shows an example of a plan for the next
three releases. Each release contains issues from the product backlog that are a mix of
desired features, architectural elements, defect fixes, and technical debt remediation.
There will be more detail for the first release or two and less detail further out into
the future as part of a long-term release plan showing what features, improvements,
defect fixes, and technical debt payments will be part of each release. The arrows
depict dependencies both within and across releases. In many cases, the architecture
must be developed ahead of the features and technical debt remediation that
depend on it.

When you have the mechanisms in place to service technical debt, you can run
some what-if scenarios to adjust the technical debt remediation timeline:

 • What if we want to be debt free? What is the cost of paying off all the debt
now? Or what is the cost of not letting the debt increase while we figure out
how to pay it down?

 • What if we postpone a payment? What is the cost of living with the debt, and
how will the repayment increase for each subsequent release?

 • What if we need to conserve cash flow now, but we also want to be debt free by
the end of the development phase? Given that the product will go into sustain-
ment in three years, how can we structure payments so we will be debt free by
then and ready to shift resources to new product development rather than sup-
port unnecessary maintenance?

Defects Technical

Debt

Features

Release 1 Release 2 Release 3

Key

Architecture

Infrastructure

Figure 9.2 Release planning

From the Library of Jan Wielemans

ptg47401904

The Business Case for Technical Debt as an Investment 143

While running what-if analysis on scenarios and comparing their implications
will give you more information to make choices, you might still have the resources
to select only a few of the debt repayment refactorings. How do you choose?
Systems differ widely, and different quality attributes (security, fault tolerance,
usability, performance, evolvability) matter more in different contexts than in others.
This is especially true for major structural changes. It also applies to tackling some
of the scattered code imperfection.

Returning to the Phoebe project, the team chose different payment strategies for
the technical debt items in its registry. Team Phoebe prioritized fixing the defect in
the user screen feature that was causing a very visible crash and had implications for
security.

Team members implemented a patch to address their most immediate concern,
and then they fixed the design in the next release to pay the debt fully. The issue
with duplicate code concerned adapters and was related to the locked-in architecture
choices in the adapter/gateway separation, so these issues were treated together.

To mitigate this major risk, team members better defined the responsibilities
of the adapter and gateway and refactored the code to better separate the two
components. They required new code to conform to the new design while they
updated the existing duplicate code incrementally. Improving build time was the next
issue to address.

A partial payment improved maintainability without sacrificing performance.
Removing the empty Java packages was a more localized fix, and the team addressed
this issue as part of the fixed buffer of time for dealing with defects and technical
debt. The consequences of technical debt in the legacy test framework were dimin-
ishing as the framework was being used less and less, so the team deferred action on
remediation for this issue.

The Business Case for Technical Debt as an Investment

We have sounded all the ills technical debt brings to software endeavors. However,
when properly managed, technical debt can be a wise investment. This aligns with
the basic financial metaphor of taking out a mortgage or borrowing money from a
bank to start a new venture, which can be smart ways to build assets. When managed
well, design choices bearing technical debt can be fruitful strategic investments and
opportunities to investigate the market and learn new technologies if they are moni-
tored for incurring interest.

Let us illustrate the combination of paths a project team can take in its journey
to make a wise software investment, this time using actual dollars and Atlas. As we

From the Library of Jan Wielemans

ptg47401904

Chapter 9 Servicing the Technical Debt144

map the team’s choices, we will use the financial concept of net present value (NPV)
to evaluate the implication of taking one path or another as Atlas decides whether to
select another feature, mitigate risk, pay the debt, or declare bankruptcy. The NPV
is the hypothetical value (estimated today) of an investment made today compared
to its future returns—that is, its possible value in the future. We will use real options
to model this. Real options include the decision—but not the obligation—for a
business to pursue, defer, or abandon a capital investment.

Atlas envisions building a new software product, called alphaPlus, to put on the
market. The initial plan is to invest $2 million to develop alphaPlus and ship Version 1.
Market analysis shows a reasonable demand for alphaPlus, but in such a dynamic
world, success is not guaranteed. The business analysts estimate that the product has
a 50% chance of success, defined as the market loving it and bringing the company
$4 million in revenue. There is also a 50% chance of a mediocre result: that the mar-
ket hates it, and the return is only $1 million. As you can see in Figure 9.3, the NPV
of the investment is $0.5 million. This is still positive overall, so the alphaPlus project
is worth launching.

But what if Atlas were to take on an enormous amount of technical debt to bring
a simpler prototype to market much earlier and use it to “test” the market? Then
Atlas would invest only $1 million and take on $1 million of technical debt (mostly
architectural, in limited scalability, in a single geographic locale, and with some
internal ugliness).

If the market loves the product, then and only then would Atlas invest the other
$1 million to complete alphaPlus. If the market hates it, Atlas will not pursue alpha-
Plus and will just walk away. As you can see in Figure 9.4, the NPV is now better:
$1 million. So, taking on this technical debt is a more valuable investment!

But wait a minute. The decision is not this simple. Atlas will have to pay some
interest on its technical debt. Estimating 50% interest on the debt to get to Version 2,
Atlas must invest not the $1 million spared but $1.5 million. However, by releas-
ing Version 1 much earlier, the company also increases its chance of success by

P1: So

NPV (P1) = -$2M + 0.5 x $4M + 0.5 x $1M = $0.5M

Market loves it

+ $4M

Market hates it

+ $1M

S1

-$2M
p =

 0
.5

p = 0.5

Figure 9.3 NPV of alphaPlus

From the Library of Jan Wielemans

ptg47401904

The Business Case for Technical Debt as an Investment 145

leapfrogging the competition, from the business analysts’ estimation of 50% to
67%. If the product is not successful, again, Atlas will not invest another dollar. The
company will declare bankruptcy and walk away. As you can see in Figure 9.5, the
NPV is still $1 million.

Even after the Atlas product has met success, the company is not bound to repay
the technical debt and refactor the system for a clean Version 2. Team members still
have the option of living with the debt and piling up more features. They can use the
same reasoning again and again at each decision point in the future, based on what
they know at that point in time (see Figure 9.6).

Is this “real options” strategy practical? Not quite yet. It might look good and
might provide some rationale for making decisions. However, it requires many num-
bers about probabilities of events in the future, about which most software develop-
ment organizations have no clue, so they have to make wild guesses. This approach
could work in theory but not yet in practice. Nevertheless, the thought process and
the act of building a simple decision tree can assist you in uncovering critical decision
points on the technical debt timeline when you take on and plan to remediate debt.
It also shows clearly that technical debt can be an asset—a good thing.

P2: So

Market loves it

Market hates it

+ $1M

Sd

p =
 0

.5

p = 0.5

S1 +$4M

NPV (P2) = -$1M + 0.5 x $3M + 0.5 x $1M = $1M

-$1M

Take debt
-$1M

Figure 9.4 NPV of alphaPlus with technical debt

P3: So

Market loves it

Market hates it

+ $1M

Sd

p =
 0

.6
7

p = 0.33

S1 +$4M

NPV (P3) = -$1M + 0.67 x $2.5M + 0.33 x $1M = $1M

-$1M

-$1.5M

Repay debt +
50% interest

Higher chance
of success

Figure 9.5 NPV of alphaPlus with technical debt repayment

From the Library of Jan Wielemans

ptg47401904

Chapter 9 Servicing the Technical Debt146

What Can You Do Today?

At this point, it is important to incorporate the following basic rules of thumb into
your decision making during iteration and release planning:

 • Ensure sustainable team velocity by allocating time to servicing technical debt.
Start by allocating 15% of your iteration budget. But know that there is no
one-size-fits-all strategy. You might, for example, need to allocate a whole
sprint to reducing technical debt; at other times, you may be able to tolerate
more debt. Monitor your progress and learn from your experience.

 • Put a context-dependent payment plan in place because repaying all debt,
except in very small projects, is simply not feasible and also not the best use of
resources.

 • Show the value of technical debt reduction tasks by specifying how they
 support high-value change requests for new features or defect resolution.

 • When choosing among refactorings, opt for the change that will offer more
flexibility for the future and support more potential evolutions, when
 economically feasible.

 • Prioritize technical debt items to fix by starting with the parts of your code
that are the most actively modified. If a subsystem or module will not be modi-
fied as a result of a change scenario in the foreseeable future, do not fix any
technical debt in it unless the change is a consequence of fixing the technical
debt in a module it depends on.

So

Favorable

Unfavorable

Sd

p =
 ?

p = ?

S1

?

S2d

S2

....

....

Ref
ac

to
r

Add feature

Add feature

Figure 9.6 Real options: The decision to add features or refactor

From the Library of Jan Wielemans

ptg47401904

For Further Reading 147

 • Recognize the time when the project is so far past the tipping point that future
maintenance or evolution is no longer viable. That is the time to declare
bankruptcy.

 • Don’t be afraid to take on technical debt strategically to your advantage
when there is value in achieving a business objective and the servicing cost is
predictable.

For Further Reading

Klaus Schmid first articulated the distinction between potential debt and actual debt
(2013b), and then formally described it in mathematical terms (2013a). Eltjo Poort
(2014, 2016) eloquently articulated the business case for technical debt reduction and
architecture’s role in risk management. Bankruptcy and amnesty have been identi-
fied by Eric Ries (2011) and Edith Tom and colleagues (2012). Highsmith (2010)
showed the financial implication of technical debt manifesting itself as increased
cost of change.

Understanding the value of software—in particular, the value of the design of
software—is not trivial. Baldwin and Clark (2000) describe how modular designs
create value in the form of future flexibility. Kruchten (2011) wrote about the value of
software architecture in his blog.

Deciding whether to pay back technical debt is related to making solid software
and business trade-offs. If you need a starter book for financial concepts applied to
software, see Reifer’s Making the Software Business Case (2001), which will help you
work through them.

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

PART IV

Managing Technical Debt
Tactically and Strategically

Chapter 10: What Causes Technical Debt?

Chapter 11: Technical Debt Credit Check

Chapter 12: Avoiding Unintentional Debt

Chapter 13: Living with Your Technical Debt

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

151

Chapter 10

What Causes Technical Debt?

Understanding the causes of technical debt is key to successfully controlling it.
In this chapter, we examine the causes of technical debt that are common across
many teams and organizations. These causes are associated with the business,
change in context, development process, and people and team. Enabling develop-
ment teams to clearly communicate about technical debt and selecting the right anal-
ysis techniques to focus on the concrete technical debt items that are accruing interest
can empower teams to take action.

The Perplexing Art of Identifying What Causes Debt

When software professionals have a name for their pain, they are eager to talk about
technical debt and look for causes. Getting to the root cause of technical debt can be
a daunting task. Especially in long-lived systems, technical debt accumulates in sev-
eral ways. Speculating about the project characteristics and organizational environ-
ment that contribute to technical debt very quickly becomes a frustrating and useless
exercise for both software developers and managers.

Talking about their massive technical debt burden is almost like a therapy session
for many software professionals. We have been there. We know how it feels! And we
have heard the following proclamations from practitioners:

 • “We have technical debt because our manager did not authorize us to migrate
the system to the cloud!”

 • “We have technical debt because the customers keep changing their minds!”

From the Library of Jan Wielemans

ptg47401904

Chapter 10 What Causes Technical Debt?152

 • “We have technical debt because we don’t know how to hire good developers!”

 • “We have technical debt because we skip proper unit and automated testing
when we are in a rush to finish a release!”

 • “We have technical debt because we had no idea that we would need to scale
up so soon!”

We know it feels good to get it out of your system, but as you talk about it, the debt
keeps building. Talking about who failed is not sufficient to do anything about it. An
important step toward getting ahead of technical debt is to understand the realities
and complexities of software development that cause the debt. While understanding
the causes will not provide a direct path to the precise location of the actual debt,
it will provide a map of the environment and help you decide where to start look-
ing more carefully. More importantly, it will help you eliminate future occurrences.
Recall two of the principles we already introduced:

Principle 3: All systems have technical debt.
Principle 4: Technical debt must trace to the system.

Managing technical debt is not a one-time activity; it is an ongoing, integral part
of the software development lifecycle. In this chapter, we discuss moving from a pos-
sibly speculative cause to a descriptive cause and the potential for injecting more
technical debt into the system. This is the period leading up to the occurrence of
technical debt in the timeline depicted in Figure 10.1. Software developers often con-
fuse the causes that lead to accumulation of technical debt with the system artifact
that has the debt and that should be fixed. You need to understand both the causes
and the system artifacts, sometimes together and sometimes separately. We already
talked about how to approach the most essential development artifacts of code,
architecture, and production infrastructure in Chapters 5, “Technical Debt and the
Source Code,” 6, “Technical Debt and Architecture,” and 7, “Technical Debt and
Production.”

Having a good understanding of the causes of technical debt will later help you
investigate its impact on the system and identify the areas of the system that will
need to change. A suitable description of a cause will enable a team to articulate con-
crete actions to take, which include eliminating the cause, deciding how to analyze
and tackle the debt, and possibly making broader changes in the organization and its
processes. The ultimate goal of effective technical debt management is to reduce the
unintended causes of technical debt and create an environment in which technical
debt occurs mostly because it was taken on for a deliberate business need.

From the Library of Jan Wielemans

ptg47401904

The Roots of Technical Debt 153

The Roots of Technical Debt

In most horror stories about technical debt, the debt resulted from a combination of
causes that built up to big problems. Unfortunately, we have seen far fewer examples
of the debt that one consciously takes on, knowing all the terms of the debt, and hav-
ing a strategy for paying it back, such as in buying a house.

Unintentional Debt

The causes of unintentional debt often confuse software development teams.
These causes range from incompetence and reckless development behavior, to
small inadvertent actions that result from lack of discipline and planning, to just
not knowing any better. Most issues related to code and design quality have their
roots in unintentional debt. Software developers and managers do not choose to
introduce this technical debt; they do so accidentally. Symptoms emerge much later
in the software development lifecycle, so the causes are hard to track down. Teams
do not know when or how the debt began and, worse, they don’t know how to get
rid of it.

Intentional Debt

Managing technical debt with intention is a resource- and value-optimization activ-
ity, most often conducted to achieve a time-to-market goal. The causes of intentional
debt are clear to the development team. This team has a business goal to satisfy
within a short time frame: a release for a new customer, a feature to add that will let
the product leapfrog the competition, a demo for prospective investors, or some

Time

Occurrence Awareness Tipping Point Remediation

T1 T2 T3 T4

BLISSFUL IGNORANCE SUFFERING FROM DEBT DEBT-FREE

GETTING VALUE OUT OF DEBT

Technical Debt Net Liability

Technical Debt Net Asset
TECHNICAL DEBT

Figure 10.1 The occurrence of technical debt on our timeline.

From the Library of Jan Wielemans

ptg47401904

Chapter 10 What Causes Technical Debt?154

other opportunities. Intentional debt involves careful and deliberate decision making
by software developers and managers. At some point, they decide to introduce tech-
nical debt to achieve some objective. This intentional debt can be short term, when
developers intend to rectify the technical debt within the next few releases. Or it
could be long term.

When Ward Cunningham first used the debt metaphor in 1992, he implied
intentionality. He used the example of shipping a system to a customer for the
first time:

Shipping first-time code is like going into debt. A little debt speeds development so long as it

is paid back promptly with a rewrite.…The danger occurs when the debt is not repaid. Every

minute spent on not-quite-right code counts as interest on that debt.

What Causes Technical Debt?

A key aspect of any successful technical debt management strategy is to recognize
that a cause contributes to the occurrence of technical debt in the system, and the
cause is not the technical debt itself. To manage technical debt strategically, you must
understand what led the technical debt to accumulate in the first place.

We sort the causes of technical debt into four major areas (see Figure 10.2):

 • Nature of the business

 • Change in context

 • Development process

 • People and team

Business

Time and cost

pressure

Misalignment of

business goals

Requirements

shortfall

Change in
context

Change in

business context

Technology

change

Natural

evolution

Development
process

Ineffective

documentation

Insufficient testing

automation

Misalignment

of processes

People and
team

Inexperienced

teams

Distributed

teams

Undedicated

teams

Figure 10.2 Main causes of technical debt

From the Library of Jan Wielemans

ptg47401904

Causes Rooted in the Business 155

These are the causes we’ve identified, though there is great variability from
project to project, and technical debt items are not evenly spread among the cat-
egories. And we do not claim to provide an exhaustive list, although we are pretty
confident that we have included a significant number of common causes. When
teams talk about causes, they often foreshadow, even if only in general, the actual
technical debt items or symptoms as well. As we present sample scripts from Atlas,
Phoebe, and Tethys, we will highlight the causes, symptoms, and potential tech-
nical debt items. The challenge these organizations faced initially was not always
understanding what technical debt items resulted from these causes. You might find
similar discussions in your organization as you start to implement technical debt
management practices.

Causes Rooted in the Business

Business goals, requirements, resources, the amount of risk the organization is will-
ing to take, and other business pressures all influence a product. Business problems
cause technical problems that lead to technical debt.

Time and Cost Pressure

Development teams most often go into technical debt because of resource pressures,
which usually boil down to time and developer costs in software development
projects. A senior developer at Atlas described the nature of the time and schedule
pressure in her project as customer-driven business pressure:

Our customers and business leaders care only that we introduce new functionality to the

users rapidly (cause). The customer gives almost no thought to what functionalities the

users will need in the future or a vision for the end-game system. The customer’s view is

short-sighted and completely focused on tactical, immediate needs. So instead of taking

the time to build a service layer for common functionality, we keep adding these services all

over the system (potential technical debt).

Who would disagree that such constraints have demotivating and draining effects
on a team? Defining success as delivering the required functionality within budget
and schedule (fixing all three points on the classic quality triangle of scope, cost, and
schedule) results in individual developer decisions that compromise intrinsic quality
and introduce technical debt. The agile software development movement was born
as a reaction to this problem and has succeeded in overcoming it to some extent by
featuring communication with the customer early and often about value, quality, and
constraints.

From the Library of Jan Wielemans

ptg47401904

Chapter 10 What Causes Technical Debt?156

In this situation that Atlas is trying to manage, the developer recognized that
the development artifact associated with technical debt is not the time and the cost
pressures. It is the design decision to skip extracting common functionality to a ser-
vice layer when developers are rushing against deadlines. And it is the flimsy software
that results as functionality is instead repeated in multiple places.

Misalignment of Business Goals

Is your product solving the right problem for the business? A technical lead in the
Phoebe project shared this example of technical debt in reference to a much-needed
effort to change the technology stack to support portability:

Poor business knowledge (cause) led to poor system design (potential technical debt),

which led to poor user experience (symptom), which in turn led to a large amount of

rework (symptom). And, most importantly, it led to the need to regain user satisfaction and

acceptance of the system—I mean acceptance in the sense of the users agreeing to use it,

not buyers’ acceptance.

This is a clear case of “garbage in, garbage out.” When the business side of the
company does not understand the technical underpinnings of the system develop-
ment or the business environment, the resulting problems in the system cannot easily
and simply be resolved by labeling them as technical debt.

Lack of clear business goals inevitably will lead to technical debt when the as-
designed-and-implemented system functionality and the expectations of the market
do not match. A case like this example from Phoebe requires understanding the busi-
ness priorities first and then tackling the system redesign.

Requirements Shortfall

Not articulating detailed requirements, not implementing expected functionality,
and not understanding architecturally significant requirements such as security,
performance, and availability that crosscut the system will all cause technical debt.
The quality assurance manager from Tethys, the global giant, had to deal with this
firsthand:

A lot of business requirements from different divisions (cause) were implemented in an

unstructured way (potential technical debt), which caused a lot of trouble with data flow

(symptom). The system is a lot more complex than it should be (potential technical debt).

More often than not, developers respond to ambiguous and poorly understood require-
ments by either making narrow choices for the limited requirements they do understand

From the Library of Jan Wielemans

ptg47401904

Causes Arising from Change in Context 157

or making overly general choices in the hope of anticipating the eventual requirements.
Both responses add complexity that makes changing the system more costly.

However, these multiple issues with the requirements are not technical debt.
A case like this example from Tethys requires first understanding the requirements
and then understanding the problems it causes in the system and the complexity of
the system that makes it costly to address these problems. Only then is it possible to
start articulating the actual technical debt.

Causes Arising from Change in Context

Technical debt is a time-related concept. A design choice that did not create any tech-
nical debt at the time the decision was made can trigger re-architecting when the
system context changes. This re-architecting is the result of technical debt that is
caused by a change in business or technology or by natural evolution. Phoebe experi-
enced this technological gap (introduced in Chapter 2, “What Is Technical Debt?”) as
the team started partnering with larger healthcare providers. Team members realized
that their choice of a web services stack created a significant number of incompati-
bilities. They faced a hard decision to reconsider their design after almost three years
of development.

Change in Business Context

Unanticipated external events create unanticipated changes in business goals. All the
decisions for a system can be appropriate at the time they were made, but in many
cases when the business context changes, they simply do not apply anymore. We
could list countless examples: Introduction of the iPhone shook up the telecommu-
nication market; advances in cloud computing facilitated infrastructure, platform,
and Software as a Service models and shifted computing resource allocation priori-
ties; and the open architecture initiatives by governments made some proprietary
internal efforts obsolete.

When faced with such extreme changes, the right approach is not to ask, “How
do we tackle our issue log?” The right approach is to ask, “Which of our business
drivers will change in this new world? Which of these business drivers will require
products to change?”

Technology Change

Technologies change—some at an anticipated rate and some in disruptive ways—
triggering business changes. Lock-in to particular software, hardware, or middleware

From the Library of Jan Wielemans

ptg47401904

Chapter 10 What Causes Technical Debt?158

technology eventually will limit design options and accumulate technical debt in the
form of unanticipated rework. Similarly, delays in upgrading technology, hence get-
ting out of sync with the most recent version available, can create issues down the
line. In fact, version mismatch is cited as one of the top causes of unanticipated secu-
rity issues that create financial drains for organizations. Such mismatches often
result in significant re-architecting efforts that might necessitate that entire releases
be devoted to reducing technical debt, since a simple patch update will not do the
trick. A wise approach is to plan ahead for technology change, balancing adaptation
with anticipation and building those estimations into the system. How much cost
you are willing to bear to anticipate future changes often depends on the level of
uncertainty of future change. The more uncertain future changes are, the more it
might make sense to adapt as you go and make changes as needed.

Phoebe’s experience illustrates the cost of a technology change. As the Phoebe
product increased its customer base, team members quickly realized that their earlier
choice of web services stack created technology lock-in and limited their deployment
options. The initial web services stack was an intentional design choice, or known
technical debt, that would allow the product to be released quickly. Then new cus-
tomers created a need for broader deployment options, which increased the amount
of debt beyond the initial value of the original design choice (the tipping point in
our timeline). This triggered payment to take higher priority: The development team
needed to replace the web services stack with a technology choice that addressed
broader requirements for Phoebe.

Natural Evolution

Systems age. As part of this natural evolution, systems change as they are main-
tained and new functionality is introduced. Such changes can eventually cripple a
system. The consequence of such natural evolution, the increasing pervasiveness of
software, and the sociotechnical complexities of creating software produce technical
debt. We captured this as a principle that summarizes the unavoidable nature of
technical debt:

Principle 3: All systems have technical debt.

A robust approach for managing technical debt that provides teams with effec-
tive tooling and incentivizes them to talk about technical debt and factor it into
development plans can help mitigate the unavoidable effects of system aging. This
is similar to healthy living, where making good choices about nutrition, exercise,

From the Library of Jan Wielemans

ptg47401904

Causes Associated with the Development Process 159

and a supportive social environment will result in improved longevity and health.
Understanding technical debt practices is similar. We address this phenomenon in
 Chapter 13, “Living with Your Technical Debt.”

Causes Associated with the Development Process

Developers and managers often categorize flawed ways of executing software engi-
neering practices and processes as technical debt. While team members might have
problems following such processes, improving the processes will not fix the technical
debt that has accrued in the system. Effective technical debt reduction involves under-
standing how undisciplined ways of executing processes influence the system, create
unintentional system complexity, and result in technical debt. Preventing new debt
from occurring requires a focused strategy, an organization process-improvement
initiative, or both. There is plenty of available information about process improve-
ment and how to choose and follow a sound software development process.

Ineffective Documentation

Documentation, in particular architectural design and test documentation, is often
the elephant in the room. Existence of system documentation does not ensure that
the system will be free of technical debt. The documentation must be effective: acces-
sible, pertinent, and up to date. Ineffective or insufficient documentation creates a
risk that the system will incur technical debt. An initial small group of developers,
under pressure to deliver, will not see much value in spending time and effort docu-
menting some of their design choices, constraints, guidelines, APIs, and other details.
Subsequent developers may hesitate to change code that they are not confident they
understand. Here is a situation from the Tethys project, as described by one of the
developers:

A portion of our product had little to no architecture documentation or descriptions of test

procedures, and it was riddled with bugs (cause). The little documentation that existed was

so outdated that it was not useful at all. Lack of acceptance of these facts, coupled with

an overriding desire to maintain a schedule, led to a release that the customer rejected

(symptom). The subsequent investigation and resolution of this problem required us to

generate the design documentation that we should have created and maintained all along.

It cost us months of time to re-create. Only after that effort were we able to locate where the

problem was in the system (technical debt).

This developer articulates very clearly the impact on the system from the lack of
clear, up-to-date, and usable documentation. Ineffective documentation often results

From the Library of Jan Wielemans

ptg47401904

Chapter 10 What Causes Technical Debt?160

in challenges in tracking existing issues, understanding their consequences, and pre-
venting them from incurring more debt. Combined with schedule pressure, injection
of new issues into the system becomes inevitable. It is likely that several causes are
active simultaneously, as Tethys experienced. Creating the needed documentation
did not resolve the project’s debt, but it did provide a resource for the team to pin-
point the problems in the system.

Documentation becomes more important as a system experiences more success
and the organization adds more people to a team. Without effective documenta-
tion, the process of bringing in the new team members becomes longer and more
error prone. There is a limit to “the code is the documentation,” especially when
the codebase grows large and when designers need to communicate key architectural
decisions. Some of the subtler design decisions are indeed embodied in the code, but
they might not be obvious to the readers of the code. This is the case, for example,
in a choice not to use a certain package or a certain feature of a library. The
reasons against a choice do not appear in the code and, if they are not documented,
the rationale is lost to members of the development team who weren’t involved in the
decision.

Because the Tethys team hires new developers frequently, lack of documentation
creates an especially high risk that they will contribute to technical debt. A member
of the Tethys team explains as follows:

Documentation is spread over a set of Word/Excel documents and about four Application

Lifecycle Management (ALM) database projects (cause). Helping someone new understand

the product specification is very difficult because the details are hard to find.

A reasonable goal is to document for the needs of the reader, focusing on just
enough documentation rather than documentation for the sake of process.

Insufficient Testing Automation

Test automation becomes especially critical when subsequent releases of a system
add more and more functionality that begins making the original features erroneous.
Adding new code can break code that originally worked as intended. Development
teams focus on testing what they develop for the current release and not what they
developed for previous releases. As a result, they introduce inconsistencies through-
out the system that cause rework in the codebase, build scripts, and test suites.
It takes a lot of effort to capture test cases systematically and instrument them in a
form that can be run against the system in an orderly fashion with tools.

At the extreme, the absence of automated acceptance or regression testing is a
major cause of technical debt. In 2004 Michael Feathers even defined “legacy code”
as “code without tests” or code that has little or no automation in running these tests.

From the Library of Jan Wielemans

ptg47401904

Causes Associated with the Development Process 161

Absence of regression tests is also a major obstacle in technical debt remediation:
Developers are concerned that refactoring may adversely affect the system’s behavior
and introduce undetected defects. Therefore, they may prefer to live with not-quite-
right code that does the job rather than improve the internal structure of the code at
the risk of altering its behavior.

Testing that is not aligned with the product goals can lead to over- or undertesting.
Testing that is not relevant to the product can lead to unproductive work or devel-
opers ignoring the results, as described with the indiscriminate use of static code
analyzers discussed in Chapter 5. Knowledge of business goals, requirements, and
architectural risk is needed to guide analysis and testing of the system.

Automated testing has a multifaceted influence on technical debt management.
An effective testing strategy, in particular for automated unit testing and regression
testing, will influence the system design and uncover issues that may turn into techni-
cal debt in the long run. The following two scenarios described by an Atlas developer
demonstrate this duality vividly:

Scenario A: Building the automated testing infrastructure

We were not able to fully stand up our automated testing at the beginning of the project

(cause). As development proceeded, the volume of features to be tested grew until the

automated testing infrastructure was fully implemented (symptom). Even after clearing this

backlog, new features and changes resulted in some older tests requiring rework so they

would continue to pass (potential technical debt).

Scenario B: Building tests to catch issues and ensuring there is sufficient automated

unit testing

Test coverage of the application wasn’t fully assessed, and the sole test resource was

removed earlier than anticipated (cause). Automated unit tests weren’t completely defined.

Developers were expected to perform adequate testing of their teammates’ code but weren’t

always able to do this as thoroughly as they needed to because they were under tight time

constraints to release the application. Consequently, we found ourselves overwhelmed with

unexpected defects that the users kept finding (symptom). The root cause of these still

lingers in the system (potential technical debt).

Scenario A describes an example of a technical debt item that introduced rework
and needed to be fixed. The nuance in Scenario A is that it describes a causal chain
that begins with the lack of automation that results in rework items in both the tests
themselves and in the system due to misalignment between the tests and code (which
we explored in Chapter 7). Scenario B also describes a chain of causes and their con-
sequences. It is similar to ineffective documentation. When the tests did not exist, the
developers did not catch unanticipated errors introduced into the system in a timely
manner, which caused technical debt to accumulate. Similarly to documentation,
testing often is present but may be very ineffective.

From the Library of Jan Wielemans

ptg47401904

Chapter 10 What Causes Technical Debt?162

The goal of managing technical debt is to tease apart the root causes (in this case,
lack of automation) from the technical debt development artifacts (reworked fea-
tures and tests). Distinguishing these is necessary to devise clear remediation strate-
gies for removing the debt.

Misalignment of Processes

All software development teams use processes. Members might deviate from the pro-
cesses, which can cause technical debt. We refer to this deviation as misalignment of
processes. Addressing the consequences of technical debt that result from misalign-
ment of processes may require multiple actions at both the product level and the
organization level. The Tethys developer who offers the following insight under-
stands the difference between reckless, inadvertent practices that could and should
be avoided and the strategic, intentional underpinnings of technical debt:

Delays in our project are due to creeping requirements, insufficient resource allocation, and

interdepartmental disagreements—and all these are due to poor process management and

cause technical debt (cause). We should fix our process but also do a deep system analysis

to understand our current technical debt.

The process used by developers could be well defined, such as Scrum, Rapid
Application Development, or Scaled Agile Framework®. Or it could be a homegrown
and implicit process with less-defined activities and roles. In a small team, members
would not need an elaborate process description but would likely have some tribal
knowledge of how they develop a system. Issues start arising when teams do not buy
into the selected processes or do not understand them well.

Examples can range from simple oversights such as not checking the approved list
of features with the customer (hence developing the wrong feature set) to not fol-
lowing the development procedures for checking in only tested code or pulling tasks
from the backlog. Creating a common understanding of and getting buy-in for the
procedures to follow among the team members will help them avoid unintentionally
accumulating debt.

Causes Arising from People and Team

One of the critical and often overlooked influences on system development is the
people developing the system. People make decisions, people implement the systems,
and people use the systems. There are countless examples of ineffective teams or
developers having widespread impact on a system that is only later recognized as
technical debt. The causes can be traced back to inadequacies in transitioning new

From the Library of Jan Wielemans

ptg47401904

Causes Arising from People and Team 163

developers from different backgrounds, recruiting the right people, providing neces-
sary training on new technology or the product environment, and so on.

Inexperienced Teams

Having one or two individuals with little experience or the wrong kind of skills is one
type of problem. But with the increasing demand for software professionals, we see
cases where organizations need to hire a substantial number of less experienced devel-
opers to put together a team, which almost immediately results in the project taking
off with technical debt. The Phoebe team unfortunately had to go through this:

At the beginning of this project, there were more than 20 developers, but nearly all of them

were entry level (cause). It took us forever to finish even a simple task, and until a couple

years ago, it really showed in the code (symptom). Functions were inefficient or needlessly

complex, an entire class was copied and pasted from the Internet without regard for how

well each part fit into the project, several functions were not actually being used or were

unneeded, and duplicate code was found throughout the system (potential technical debt).

The critical point here is to recognize the issues caused by inexperienced teams
and provide the right learning environment for them to succeed. In a situation such
as Phoebe’s, the organization should develop hiring and training strategies and use
focused analysis tools to identify, prioritize, and fix the issues brought up in this anec-
dote. The development artifacts are the copied class, the functions with unneeded
complexity, and the unused and duplicate code. To pay the existing debt, the team
needs to fix the artifacts and ensure that the costs do not recur.

The knowledge and experience of stakeholders outside the team who have key
decision-making power is also critical. For example, the Atlas team endured a period
of frustration with the product owner as team members moved their product to a
mobile environment:

The cause of the technical debt can be traced to the product owner, who does not

understand mobile applications or the systems that mobile applications work with (cause).

The product owner also does not understand basic development processes or agile

methods. We spend most of our time correcting or teaching the product owner about mobile

technologies or development processes in order to do our job.

It is important to recognize that while lack of experience can inject uninten-
tional technical debt into a system, getting caught up in the blame game will take
the product or the team nowhere. Technical debt should be traced to the system
artifact where it exists. Then the team can determine how to pay existing debt and
rearrange responsibilities to ensure that the people with the right skill sets will have
the right roles in the future, or needed skill development can be provided. Teams can

From the Library of Jan Wielemans

ptg47401904

Chapter 10 What Causes Technical Debt?164

build competence when they have the resources and opportunities to develop skills,
share knowledge, and gain experience as they apply what they have learned in their
projects.

Distributed Teams

Coordination issues can create misaligned assumptions about design decisions,
which can cause technical debt. Distributed teams face task coordination challenges
more often than not. Planning for handoffs should account for potential coordina-
tion issues. The Tethys architect offers an example of his project team’s interaction
with an offshore team:

We learned the hard way that handing development to the offshore team before ironing out

all the architectural wrinkles can accumulate significant debt, even when you are taking

it on intentionally (cause). We allowed the offshore team to start developing, warning

them that the API calls were incomplete in some areas because we needed to understand

performance implications better. We assumed that we could coordinate these changes

once we decided what to expose on the API. The offshore team had to make certain

assumptions on the API to start, which included the incomplete parts, and our teams did not

communicate well. Unfortunately, this resulted in redo in multiple areas (technical debt).

The Tethys architect assumed that his team in California could complete the API
while the offshore team in Europe started implementation. Because his team arrived
at work after the offshore team had gone for the day, it took the California team
a few rescheduled meetings to realize that they would have to get to work early to
communicate with the offshore team. Although the architect explained that there
were missing API calls, the offshore team assumed that if the California team handed
over development, the architecture must be good enough. From the perspective of the
project lead of the offshore team, he did the right thing. Unfortunately, one of the
missing API calls turned out to be key for optimizing performance. Incomplete API
calls represented intentional technical debt for the California team. These avoidable
misinterpretations between the two distributed teams regarding the status of the API
caused the unintended consequence of a performance bottleneck to hit even harder.
It took these two teams a while to understand where the issue was located.

Undedicated Teams

In many organizations, developers get pulled in several directions, especially the
more experienced ones. This creates not only task switching but also priority shifts.
An individual or a team that has competing priorities will focus attention on the
most pressing items. In matrixed organizations, project managers should give special

From the Library of Jan Wielemans

ptg47401904

What Can You Do Today? 165

attention to setting priorities to avoid losing the attention of teams and individuals.
The Atlas, Phoebe, and Tethys projects all suffered from the consequences of unded-
icated teams, especially as they started to grow. Building effective, focused, dedicated
teams is a social and organizational challenge. The downside of not making team
building a priority is that when teams are not given enough time, training, autonomy,
and resources, they will inject unintentional technical debt as they make design
trade-offs to manage priorities.

To Conclude

This chapter describes the causes of technical debt in four major areas: business,
change in context, development process, and people and team. Many success stories,
as well as failure stories, of technical debt can be traced to one or more causes in
these areas. You will find that most of the time, schedule and cost pressure are the
contributors that create a domino effect with other causes that pile up as well.
Recognizing the causes will help you recognize technical debt, intentional or
unintentional.

Knowing the business, understanding the technical underpinnings of the system,
avoiding process churn, and building effective teams will help you manage techni-
cal debt. Understanding the causes helps you identify the elements of your software
development process and organizational realities that create risks for injecting tech-
nical debt into your system.

What Can You Do Today?

For major kinds of technical debt, it is important to identify the root cause: schedule
pressure, process or lack of process, people availability or turnover, knowledge or
lack of knowledge, tool or lack of tool, change of strategy or objectives, and so on.

It is possible to understand and avoid or mitigate the causes of your technical debt
immediately, with easy, low-cost actions such as the following:

 • If you are a software developer, an architect, or a tester who is an active partici-
pating member of a development team, communicate the causes you observe
with your team. Meanwhile, describe the rework to reduce technical debt that
is the consequence of these causes.

 • If you are a team lead, project manager, or Scrum master, start by asking
your team what causes technical debt and what the team can do to avoid these
causes.

From the Library of Jan Wielemans

ptg47401904

Chapter 10 What Causes Technical Debt?166

 • If you are a software development manager, director, or program manager who
oversees multiple projects, create clear communication lines for the business
goals and short-term and long-term vision for the product. Give power to your
teams and invest in developing their skills. Do not jump to conclusions. Taking
a day and a half to conduct a structured root-cause analysis discussion can save
you a lot of headaches as your project advances.

When you understand the causes, you can plan specific actions to address them or
mitigate their effects.

For Further Reading

In “Technical Debt Quadrant,” Martin Fowler (2009) articulated the difference
between deliberate (intentional) and inadvertent (unintentional) technical debt.

Pioneer thinkers in software engineering like Manny Lehman (1980, 1996) and
David Parnas (1994) made us aware of the consequences of natural evolution and
software aging decades ago. Natural evolution and software aging are two of the
reasons all systems have technical debt.

Jim Highsmith (2002)—then of the Cutter Consortium and now with
 ThoughtWorks—has written extensively about agile project management and the
tension between adaptation and anticipation. This tension has an impact on all four
areas of technical debt causes that we have discussed: the nature of the business,
change in context, development process, and people and team.

George Fairbanks (2010) introduced the idea of “just enough architecting,” which
also addresses just enough architecture and design documentation. He focused on
the need for effective and sufficient information at the right time rather than archi-
tecting and documenting just for checking a box.

Stories from developers and software project managers help us understand how
they categorize causes of technical debt. Studies by Lim and colleagues (2012) and
Tom and colleagues (2012) provide anecdotes that map to types of causes similar to
those we summarize in this chapter.

From the Library of Jan Wielemans

ptg47401904

167

Chapter 11

Technical Debt Credit Check

You want to execute a deep analysis of your system and formulate a strategy for
managing your technical debt. Beginning with a quick sanity check of the business
goals against the system architecture, development practices, and organizational
context will provide guidance for successfully executing that deeper analysis and
determining actionable outcomes. In this chapter, we introduce a technique for
assessing the context and state of your software development project to reveal the
causes of your debt.

Identifying Causes: Technical Debt Credit Check

How do you begin to manage a complicated situation? Consider this scenario: You
come home and find out your living room is flooded. What do you do first? Do you
think about the best plumber to call? Do you mop the floor? Do you call your insur-
ance agent? Or do you quickly look around to assess the situation, see if the water is
continuing to come in, shut off the main water valve, move your belongings out of
harm’s way, and then figure out the cause, the source of the water?

Likewise, a quick check of a project and the software and system under develop-
ment may reveal technical risks in the business vision, architecture, organization, and
development practices that can potentially inject technical debt into the system. You
can use these findings to define criteria for measuring technical debt and select tech-
niques and tools that will help you measure against those criteria. You will find this
information useful if you plan to conduct an overall technical debt analysis of your
system to fully characterize its current state of technical debt.

The goal of the Technical Debt Credit Check is to identify the root causes of a
system’s existing technical debt and determine whether the debt will continue to

From the Library of Jan Wielemans

ptg47401904

Chapter 11 Technical Debt Credit Check168

grow. Understanding the causes of debt is essential for selecting the appropriate
management practices and removing the debt. In Chapter 10, “What Causes Tech-
nical Debt?” we looked at common causes of technical debt. The Technical Debt
Credit Check helps teams understand what might be causing their debt, especially
if it is at a chronic level. This simple questioning technique enables teams to quickly
review their business vision, the organization’s capacity to support that vision, and
the software development artifacts and practices. For the flooded living room, such
a check would help you determine whether the pipes leaked, the dishwasher over-
flowed, or someone left a faucet on. Once you find the source, you can stop the flow
of water and look for damage in other areas of the house that might not be as visible
as the water in the living room.

In the next few subsections, we describe the purpose of this technique, who par-
ticipates and when, what types of input you need, the steps to proceed, and the
outcome.

Purpose

The Technical Debt Credit Check is a systematic approach to navigate through the
context and state of a software development project, using four focus areas that are
worthy of attention. By reviewing key criteria, an organization can quickly identify
potential causes at risk for creating technical debt and that need further analysis.
This initial technique is especially useful when an organization is dealing with the
consequences of unintentional technical debt. In Chapters 5, “Technical Debt and
the Source Code,” 6, “Technical Debt and Architecture,” and 7, “Technical Debt and
Production,” we described how to choose appropriate analysis approaches to further
clarify the root causes and trace technical debt to the development artifacts associ-
ated with code, architecture, and deployment.

Who Is Involved?

This technique identifies the potential causes of technical debt from the perspective
of the development team and project management. Developers have firsthand knowl-
edge of the development artifacts associated with technical debt and its symptoms,
and managers grasp the consequences for cost and value. A small group of two or
three members of the project team will act as analysts and interview the key stake-
holders of the project, focusing on areas of the business vision, architecture, devel-
opment, and organization.

When Can You Conduct?

You can use this technique in two ways. An organization or a team may sense that tech-
nical debt is building up but find it hard to begin addressing it systematically. In such a

From the Library of Jan Wielemans

ptg47401904

Identifying Causes: Technical Debt Credit Check 169

case, you can use the technique as an intervention to bring awareness of technical debt
into the organization. You can also use the technique as an ongoing activity that is part
of the project’s process for continuous improvement. In this case, you establish a base-
line of areas that are most likely to contribute to technical debt and allocate analysis
and management resources accordingly. Once the baseline is established, you can use
the criteria to investigate causes periodically to keep technical debt under control.

Inputs

The inputs to this technique are the context and state of the software development
project, focusing on the business vision, architecture, development practices, and
organization. Focusing on these areas will help the team move quickly from overgen-
eralized causes that may express any project’s struggles (summarized in Chapter 10)
to project-specific causes that the team can use to identify concrete technical debt
items. The inputs may be found in multiple artifacts as well as in the heads of devel-
opers and key stakeholders and in the tribal knowledge of the organization.

Steps

Here is a step-by-step description of how to conduct a Technical Debt Credit Check:

 1. In collaboration with the project decision makers, select key stakeholders to
interview. At a minimum, select junior and senior developers, the architect, the
project manager, and key decision makers.

 2. Discuss the state of the project, focusing on the business vision, architecture,
development, and organization. Ask questions targeted to uncover the com-
mon causes of technical debt, as detailed later in this chapter.

 3. Consolidate issues across the key focus areas to identify causes that lead to
risks related to the business goals, the architecting activities, the development
practices, and how people are supported by the organization. Issues may be
similar or may overlap.

 4. Present the results to all the stakeholders and the key decision makers.

 5. Guide the stakeholders in prioritizing the identified causes. Estimate the prob-
ability of occurrence and the potential impact of each risk. Rank them accord-
ing to their potential risk of triggering technical debt—high, medium, or low.
Express the resulting list as typical risk areas but focus on technical debt, as in
these templates:

 • If <bad thing that may happen>, then <negative consequence> might result.

 • <Factual statement of existing situation> may lead to <negative consequence>.

From the Library of Jan Wielemans

ptg47401904

Chapter 11 Technical Debt Credit Check170

Output

The output is a scorecard that includes a list of causes of technical debt and the
impact rating of each as high, medium, or low.

Four Focus Areas for Understanding the
State of a Project

We suggest that you initially focus on four key areas to understand the context and
state of a project. These four areas will help you filter the myriad causes to a handful
of them to develop a simple, actionable strategy for technical debt triage.

Business Vision

Through a clear vision of the business goals for the system, a project team will
understand the desired system qualities, the desired software development state, and
the consequences of choices that developers make when diverging from that state.
Without this clear vision, a system can suffer many unintended consequences that
result in technical debt. Key criteria to investigate to ensure that the development
effort is aligned with the business vision include the following:

 • Are business goals clear, and do they reflect stakeholders’ concerns?

 • Are success strategies defined and clearly communicated (for example, road-
maps, product portfolios, key timelines)?

 • Is funding secured, and are there related resource priorities that could affect
the project?

 • Does the product owner understand the dynamics of the business environment
and changing market opportunities?

 • Are consequences of key business decisions for product design and develop-
ment clear?

 • Has the development team established effective communication channels with
the customer? And timely feedback cycles?

The focus on business vision will help you identify business-related causes (as dis-
cussed in Chapter 10), such as the magnitude of time and cost pressures, alignment
of business goals, and clarity of requirements.

From the Library of Jan Wielemans

ptg47401904

Four Focus Areas for Understanding the State of a Project 171

Architecture

Architecting activities that balance the short-term and long-term technical goals of a
project must be integrated into the software development lifecycle to strategically
manage technical debt. The view that these activities happen sequentially often creates
silos, architecture conformance issues, and unexpected rework costs in later stages of
the development effort. Teams must make architectural decisions with consideration
for business goals, organizational needs, and the desired state of development. Key
criteria to investigate include the following:

 • Are architecturally significant requirements defined, tied to business goals, and
communicated clearly across the business and technical stakeholders?

 • Is evidence provided that the architecture satisfies key requirements?

 • Are there known architectural issues, and are they tracked and managed?

 • Is the timeline of key architectural decisions clear, considering both short-term
and long-term business goals that the architecture needs to support?

 • Is the impact of the changes in technology and their limitations clear?

 • Are key build and integration, test, and deployment scenarios clear, well
developed, and utilized in a timely manner?

Identifying causes of debt related to the architecture will uncover causes related
to the context of the project, such as technology change, business shift, or market
evolution. It will also give hints about where the most critical technical debt may
reside in the system. In addition, you may uncover process-related causes—not only
processes related to architecture but also processes related to documentation and
software development. Process causes are important because they indicate how well
your processes will guide the team to manage and service technical debt.

Development

The bottom line of any software engineering project is the quality of the running
system. It is critical to align the development practices with the business goals and
architecture to avoid unintentional debt. Investigating the following criteria will help
uncover potential risks related to development and its processes and tools:

 • Is the development infrastructure in place and aligned with the architecture?

 • Are necessary quality control methods available and used (for example, code
reviews, inspections, testing, continuous integration, deployment practices)?

From the Library of Jan Wielemans

ptg47401904

Chapter 11 Technical Debt Credit Check172

 • Does the development team have appropriate tools and use them effectively? Is
training provided when needed?

 • Is an environment in place to measure and monitor the implemented system
quality and “done” criteria?

 • Has the development team considered code maintenance and evolution?

 • Does the team understand, embrace, and follow the established software devel-
opment processes and practices?

Organization

Any successful organization operates within a culture and established procedures.
When an organization’s underlying culture and processes do not support its people
and embrace change, technical debt creeps in. Key criteria to investigate include the
following:

 • Does the organizational structure enable collaboration? Do the development
team, project management, and architects effectively support each other?

 • Are necessary procedures and technology in place to respond to change?

 • Has the organization determined the impact of cost of delay and rework and
decided how to manage trade-offs?

 • Has the organization acknowledged the impact of uncertainty on the project?

 • Has the organization provided training for skills needed to succeed in the
project?

 • Has the organization provided the team with sufficient resources?

 • Is there a procedure to bring new team members up to speed with the project?

 • Have teams and team members established clear communication channels?

Diagnosing the Causes of Technical Debt in Phoebe

The example we gave in Chapter 10 from the Phoebe project showed that technology
change was the cause of an architectural issue:

The open-source web services stack that we rely on went through several versions, but we

did not upgrade. Our customers require new features that we cannot support if we do not

upgrade soon.

From the Library of Jan Wielemans

ptg47401904

Diagnosing the Causes of Technical Debt in Phoebe 173

Figure 11.1 shows the scorecard for causes of technical debt in the Phoebe project.
We recommend rating the outcomes as red, yellow, and green, where red indicates
that the issue area is causing technical debt, yellow indicates that the area is a poten-
tial cause of technical debt if not managed better, and green indicates that the area
is being managed adequately. A red rating implies that the answers to the questions
under that focus area were mostly negative or insufficient. Phoebe clearly needs to
better manage its short-term and long-term architectural issues.

business goals

success strategies

resources

customer communication

consequences of business decisions

feedback cycles

...

architecturally significant requirements

architecture fitness

architecture issues

short-term and long-term architecture goals

impact of technology change

build, integration, test, and deployment alignment

…

development infrastructure

quality assurance

development tools

done criteria

code maintenance and evolution

software development processes and practices

…

collaboration

change management

cost of delay and rework

uncertainty

development team resources

new employee onboarding

team communication

…

O
R

G
A

N
IZ

A
T

IO
N

 (

)
D

E
V

E
L

O
P

M
E

N
T

 (
-)

A
R

C
H

IT
E

C
T

U
R

E
 (

-)
B

U
S

IN
E

S
S

 V
IS

IO
N

 (

)

No issues causing technical debt (green)

Can improve, can contribute to technical debt (yellow)

Significant issues contributing to technical debt (red)

Legend

Figure 11.1 Scorecard for causes of technical debt in the Phoebe project

From the Library of Jan Wielemans

ptg47401904

Chapter 11 Technical Debt Credit Check174

Diagnosing the Causes of Technical Debt in Tethys

Let us look in detail at Tethys, an organization that needs to focus on aligning its
business goals and organizational processes. As Tethys grew into the global giant it is
today, management decided to separate the responsibilities of development and qual-
ity assurance. The development teams operated in an iterative and incremental deliv-
ery tempo, and the quality assurance team followed a waterfall approach to the
software development lifecycle. In safety-critical and avionics environments, where
products must conform to industry and safety standards, such over-the-wall handoff
between development and quality assurance is not uncommon.

However, the delivery schedule of the development teams did not align with the
quality assurance teams’ expectations and schedule. The development teams deliv-
ered features in increments. The quality assurance team did not test feature incre-
ments even though other features relied on them, waiting instead to test each entire
feature once it was complete. The inevitable consequence of this practice was that
quality assurance found defects, and developers’ time became consumed with fix-
ing them. While the project manager prioritized new features above all other tasks,
new feature development started slipping, and time pressure to deliver became the
development team’s top priority; the development team had to navigate conflicting
priorities of fixing defects and developing new features. In these ways, misalignment
of business goals and organizational processes created substantial roadblocks for
Team Tethys.

In addition, another organizational issue had causes rooted in inexperienced
teams, an area that contributes many causes of potential technical debt across the
software industry. One Tethys developer reflected on this issue:

We have a very high turnover rate, but we do not allocate the time to bring the new hires up

to speed with the system and our development practices. New hires inject a lot of defects

because we do not onboard them properly. When more experienced staff members mentor

new hires, they succeed, and we do not see the chaos, but often no one takes enough time

to do this, and then issues go unnoticed. This lack of training will eventually slow down our

velocity, which is already showing signs of the problem.

The team lead of Tethys negotiated with his manager and customer to postpone
new features as the inexperience of junior members was becoming more problematic
with each iteration. While the team fixed some of the immediate issues caused by
these defects, he conducted a Technical Debt Credit Check and reported the results
in the scorecard shown in Figure 11.2.

A closer look at the Tethys business vision revealed a misalignment of business
goals. The project team did not understand the product-line opportunity. While the

From the Library of Jan Wielemans

ptg47401904

Diagnosing the Causes of Technical Debt in Tethys 175

long-term goal was to serve multiple markets with the same product, the short-term
goal was to serve a pressing time-to-market requirement. The development teams
went out of their way to create a general architecture, and they missed the immediate
product-specific delivery needs, further adding time and cost pressure.

business goals

success strategies

resources

customer communication

consequences of business decisions

feedback cycles

...

architecturally significant requirements

architecture fitness

architecture issues

short-term and long-term architecture goals

impact of technology change

build, integration, test, and deployment alignment

…

development infrastructure

quality assurance

development tools

done criteria

code maintenance and evolution

software development processes and practices

…

collaboration

change management

cost of delay and rework

uncertainty

development team resources

new employee onboarding

team communication

…

O
R

G
A

N
IZ

A
T

IO
N

 (
-)

D
E

V
E

L
O

P
M

E
N

T
 (

)

A
R

C
H

IT
E

C
T

U
R

E
 (

)

B
U

S
IN

E
S

S
 V

IS
IO

N
 (

-)

No issues causing technical debt (green)

Can improve, can contribute to technical debt (yellow)

Significant issues contributing to technical debt (red)

Legend

Figure 11.2 Scorecard for causes of technical debt in the Tethys project

From the Library of Jan Wielemans

ptg47401904

Chapter 11 Technical Debt Credit Check176

Tethys began its journey to the market with significant risks that the project team
would inject technical debt into the product because of its confusion about short-
term goals and the business vision. The goal of creating a solution that envisioned
all potential variations of the product resulted in an over-parameterized architecture.
In an effort to create an infrastructure robust enough to handle the natural evolu-
tion of the products and product line, the team added unnecessary complexity for
the immediate customer need. Both the overgeneralized architecture and unneces-
sary complexity created several technical debt items as development progressed.
The team got lost within the variation parameters, so many of the features they
implemented were incomplete. Alternatively, focusing exclusively on the short-term
goals of the immediate customer would have introduced a different set of issues.
Getting clarity on the trade-offs would have helped team members recognize where
they would need to take on technical debt with intention so that they could manage
it strategically. The Tethys project would have taken on technical debt either way,
but it missed an opportunity to take on the debt strategically and not only acquired
the wrong type of debt but also did not recognize it until it almost got the project
canceled.

The organizational structure of Tethys provides clues about how a number of
causes related to process contributed to the accumulating technical debt. Tethys was
not able to align the multiple processes of the iterative and waterfall models across
the distributed development and quality assurance teams, which operated at differ-
ent tempos due to the challenges of fulfilling compliance requirements in the safety-
critical domain.

The Tethys project used three different cycles: annual releases to the customer,
quarterly testing performed by a quality assurance team, and monthly sprints con-
ducted by the development team. The goals of each cycle were different, yet they
had important dependencies. For example, by the time the quarterly testing found
issues with product features in a given release, the development team had already
implemented three other releases on top of the system, increasing its size and com-
plexity. This made it harder for the team to locate issues, so they spent an extensive
amount of time in bug-fixing mode. Consequently, by the time the developers real-
ized that they could not make progress while using three unaligned cycles, it was too
late to redesign the overly complex architecture that resulted in unmaintainable and
buggy code.

After conducting the Technical Debt Credit Check, team members realized that
their misaligned business goals created the overly complex architecture. They con-
ducted an analysis of their codebase, using some static analysis tools, focusing on
security (as discussed in Chapter 5). To understand the impact of that debt, they
conducted an architecture review (as discussed in Chapter 6). Consequently, the

From the Library of Jan Wielemans

ptg47401904

What Can You Do Today? 177

team decided to take the following corrective actions immediately to reduce the debt
and avoid its further accumulation: Reduce the number of variant parameterizations
in the architecture, add guidelines for architecture conformance, and have everyone
work from the same architecture. There were other consequences of the Technical
Debt Credit Check, such as replanning the release cycles to better align the develop-
ment and testing cycles and revisiting the testing strategy completely (as discussed in
Chapter 7).

Mapping the events onto the technical debt timeline as shown in Figure 11.3
allowed the Tethys team to assess the consequences of its debt. Team members con-
tinued to mitigate risk by remediating the debt, as discussed in Chapter 9, “Servicing
the Technical Debt.” They decided to stop delivering new features for at least a quar-
ter until they repaid some of the debt. Distinguishing the causes of their debt and the
current debt that they needed to fix allowed them to recognize that if they kept fix-
ing defects, they would never get ahead of the problem. They needed to correct the
course of their product-line architecture.

What Can You Do Today?

Teams that do not follow established software engineering practices will take on
reckless and unintentional technical debt. In this chapter, we introduced a technique
to help you identify where you may be diverging from established practices and intro-
ducing technical debt.

With the right stakeholders in the room and good facilitation skills, you can con-
duct your own Technical Debt Credit Check and create a scorecard indicating the
causes that contribute most to your technical debt accumulation. Then you can begin
developing a plan to manage your debt strategically.

Awareness Tipping Point Remediation

T2 T3 T4

Occurrence

T1

Artifact:
Variation parameters

interact detrimentally.

Symptom:
New feature development

is continually slipping.
Accumulation:
Teams spend almost all of

their time fixing defects.

Remediation:
Stabilize

architecture.

Figure 11.3 Tethys and the technical debt timeline

From the Library of Jan Wielemans

ptg47401904

Chapter 11 Technical Debt Credit Check178

For Further Reading

Technical risk assessment is a routine practice in many organizations. The Technical
Debt Credit Check we describe is inspired by these approaches, but it is meant to
provide a lightweight approach to assessing technical debt risks. The Architecture
Tradeoff Analysis Method by the Software Engineering Institute (Bass et al. 2012),
for example, similarly walks through the architecture of a system to uncover techni-
cal risks against business goals and architecturally significant requirements.

The guidelines that the Agile Alliance Technical Debt Initiative has developed
for executives, managers, and developers summarize code quality rules that, when
violated, generate technical debt. In particular, they propose an Agile Alliance Debt
Analysis Model (A2DAM) (Fayolle et al. 2018).

From the Library of Jan Wielemans

ptg47401904

179

Chapter 12

Avoiding Unintentional Debt

In this chapter, we summarize software engineering practices that any team should
incorporate into its software development activities to minimize unintentional
technical debt. These practices are essential for organizations and teams to institu-
tionalize an integrated approach to managing technical debt.

Software Engineering in a Nutshell

Managing technical debt requires a broad understanding of software engineering
practices—and that is exactly the goal of this chapter: providing starting points for
practices that are essential for establishing a well-rounded approach to technical debt
management so you can spend your time on strategic technical debt rather than
fighting avoidable fires. Because these practices are described in many software devel-
opment books, we only summarize them here and explain how they support techni-
cal debt management or how they relate to technical debt.

Not using sound and proven practices to run a software engineering project is
likely to bring you a lot of technical debt. We discussed aspects of this phenomenon
in detail when we teased apart the causes of technical debt in Chapter 10, “What
Causes Technical Debt?” More importantly, using recommended software engineer-
ing practices will help you avoid violating the key principles of technical debt that
we’ve introduced in this book.

If you do not institutionalize good coding standards and code quality checking
practices, in time your code will inevitably degrade. You will start getting lost in
accumulated defects. Your architecture will also eventually start degrading.

From the Library of Jan Wielemans

ptg47401904

Chapter 12 Avoiding Unintentional Debt180

If you do not know your architectural decisions and trade-offs and review them
continuously, you will not react to architectural changes in a timely way. You will not
be able to determine what to fix, where to fix it, or what caused the issue in the first
place. Keep in mind these two principles:

Principle 5: Technical debt is not synonymous with bad quality.
Principle 6: Architecture technical debt has the highest cost of ownership.

If you do not know your short-term and long-term organizational and project
goals and do not institute practices to establish a roadmap toward them, you will get
caught in the “blame game.” As we pointed out in Chapter 3, “Moons of Saturn—
The Crucial Role of Context,” only the most trivial systems escape technical debt,
and it is better to manage it deliberately than to have it manage you accidentally.
Keep in mind this additional principle:

Principle 3: All systems have technical debt.

Good coding, architecture, and production practices are essential components of
good software engineering and lead to greater responsiveness to business needs and
quality code that is easier to evolve and maintain. Making your software “observable”
in some way—through techniques such as static code analysis, monitoring, and
logging—will allow you to collect data and use it to interpret system behavior and
how it correlates with the evolution and maintenance challenges you experience. We
take a deeper look at these practices next.

Code Quality and Unintentional Technical Debt

The following four fundamental practices are critical for creating high-quality and
maintainable code:

 • Establishing and following sound coding standards

 • Establishing and following secure coding standards

 • Writing maintainable code

 • Refactoring

From the Library of Jan Wielemans

ptg47401904

Code Quality and Unintentional Technical Debt 181

If you abandon fundamental principles of software craftsmanship, your code will
drown in recurring interest payments throughout the life of the project.

Sound Coding Standards

Coding standards are guidelines for specific programming languages that recom-
mend programming style, practices, and methods for each aspect of a program writ-
ten in that language. The most common form of scattered and unintentional
technical debt results from not following such coding standards.

Most software development organizations adopt some form of coding standard
that specifies acceptable and objectionable code idioms. These standards are devel-
opment language specific. Their main objectives are as follows:

 • Increasing programmers’ and maintainers’ understanding of the code

 • Avoiding common coding mistakes

 • Preventing the use of dangerous, error-prone, or costly forms of implementa-
tion constructs

These guidelines include naming conventions, formatting of code, and permis-
sible language constructs. Other areas of concern include file organization and
documentation in the form of comments to improve understandability of the over-
all codebase. Examples of commenting guidelines include the minimum amount of
documentation for every public class and public method and what does not need
comments within the code. An effective style guideline often describes phrases that
avoid confusion and key phrases that increase ease of navigation. “Basics” go a long
way, especially in projects where large teams need to be orchestrated, such as when
establishing and following naming conventions for public, private, and protected
attributes, classes, and method calls.

Integrated development environments help enforce standards and style guides. All
the developers on your team should be intimately familiar with and follow the stand-
ards and style guides to be used for the project. These can be company specific, or
you can adopt an industry practice, such as Google Java Standard Guide or Oracle
Code Conventions for the Java Programming Language.

Secure Coding Standards

Secure coding is the practice of developing software in a way that guards against the
accidental introduction of logic flaws and implementation mistakes that result in
commonly exploited software vulnerabilities. A combination of security issues,
especially when caught late, will accumulate and become technical debt.

From the Library of Jan Wielemans

ptg47401904

Chapter 12 Avoiding Unintentional Debt182

The timeline of the Phoebe team mirrors the journey of many teams we interact
with. As their product matured, team members started to realize that they would
have to do more to demonstrate the security aspects of the product, especially given
the needs of their government customers. In anticipation of coming requirements,
they decided to be proactive and run a security analysis tool through the codebase.
They added several technical stories and tasks to their backlog:

Task: Execute security scan on Phoebe code and document findings.

Technical story: As a Phoebe developer, I want to resolve all the security scan findings with

Critical or High priorities.

Technical story: As a Phoebe contributor, I want to address all Medium and Low security

scan issues so that the code quality is improved.

Team Phoebe elected to use a security scanning tool called Fortify, which offers
features in static and dynamic application security testing through automating the
checking of conformance to secure coding standards based on commonly found
security issues. One reason for selecting Fortify was the fact that Phoebe was imple-
mented with Java, with extensive use of J2EE libraries for which Fortify offered up-
to-date conformance checks at the time.

As a result of the security scan, team members added 69 more issues to the backlog.
In isolation, none of these issues were technical debt. Indeed, most of the issues were
minor. However, when analyzed together, it became clear that the Phoebe project had
technical debt related to security in the code. A significant number of the issues that
were returned by this scan included poor error handling where null pointer exceptions
were not caught properly or exceptions were not thrown or caught properly. These were
symptomatic of an underlying design limitation in the treatment of exception han-
dling. The list of violations included other common examples, such as the following:

J2EE bad practice:

Leftover debug code

Poor error handling:

Overly broad throws

Poor logging practice:

Use of a system output stream

Poor style:

Value never read

Non-final public static field

Confusing naming

Redundant null check

From the Library of Jan Wielemans

ptg47401904

Code Quality and Unintentional Technical Debt 183

All these vulnerabilities in time will create security risks that can crash the system,
be exploited, or both. After team members addressed these issues, they also educated
the rest of the team to follow secure coding practices.

A number of resources can guide you in improving your secure coding practices.
For example, the Open Web Application Security Project maintains a document that
summarizes secure coding rules and practices. Some of these resources provide gen-
eral guidance, such as “protect server side code being downloaded by a user,” with-
out specifying the kind of protection mechanism to use. Others enforce very specific
rules, such as those included in the SEI CERT Secure Coding Standards. There are
also tools that implement these and other rules. The MITRE Corporation maintains
a universal Common Weakness Enumeration (CWE) database as well as a Common
Vulnerabilities and Exposures (CVE) database. These are only some of the ample
resources available to educate your teams in secure coding and help them implement
best practices. Teams should review secure coding practices at the beginning of a
project, when they are establishing coding standards.

But secure coding gets a bit tricky from the perspective of technical debt. Secu-
rity often gets top priority, and when such issues are found, they are the first to be
fixed. Sometimes these are random patches that introduce technical debt. Treating
each issue in isolation will often not address the technical debt. Often combinations
of security issues that relate to architectural design consequences both create techni-
cal debt items and constrain the approaches to fix them. Not following known secure
coding practices and standards increases the odds of introducing technical debt to
the system, and it will make finding the roots of problems harder as the system grows.

Maintainable Code

Maintainable code and architecting for maintainability are closely related to each
other. Following well-established best practices will enhance code maintainability,
such as establishing common criteria for class sizes, guiding the use of external
libraries, and selecting architectural patterns that promote maintainability.

The ISO/IEC 25000 standard (which evolved from ISO 9126) on software product
quality describes system quality characteristics. Maintainability incorporates such
concepts as changeability, modularity, understandability, testability, and reusability.
Many source code properties affect maintainability. Characteristics that are rele-
vant to maintainable code include unit size, unit complexity, unit interface, dupli-
cation, coverage, coupling, cycles, propagation, and types of dependencies. Units
can be groupings defined by the artifacts in the development environment (such as
lines of code and the number of files, directories, packages, or projects) or semantic
constructs of the software asset (such as functions, blocks, classes, statements, and
accessors). Organizations such as the Object Management Group and Consortium
for IT Quality have recommended standards specifically related to maintainability.

From the Library of Jan Wielemans

ptg47401904

Chapter 12 Avoiding Unintentional Debt184

Writing maintainable code is part of developing high-quality code. In the same
way, understanding maintainability is part of architecting the system. Establishing
clear baselines for these practices will help you avoid the kind of technical debt that
is most commonly seen and most costly, yet least likely to be fixed.

Refactoring

Refactoring is a behavior-preserving transformation that improves the overall code
quality. Refactoring is not simply cleaning up code; it is a technique involving apply-
ing known patterns of improvement. While each refactoring does a little, a series of
transformations can introduce both needed restructuring and improvements in code
quality and complexity. Basic refactoring guidance is widely available. There are
resources that describe how to make small, local transformations and some tools
that implement them. There are also catalogs of generic refactoring patterns as well
as catalogs of patterns specific to programming languages.

Before refactoring code, you need a solid set of automated unit tests. The unit
tests should pass both before and after the code has been refactored. Unit tests safe-
guard against introducing new issues unintentionally. Savvy developers ensure that
unit tests are used and passed during refactoring activities.

The Atlas team relied on refactoring to manage its technical debt within short
iteration cycles. Here are two of the team’s technical debt items:

Atlas #102: Placeholder: I changed the code and made the tests pass, but the tests are not

testing the code. I will fix this tomorrow.

Atlas #623: We should create a toolbar superclass /ui/toolbar/bottom_toolbar.mm. And

reading_list_toolbar.mm, clear_browsing_bar, and bookmark_context_bar should be based

on the superclass. This way, we can reduce the redundant code and technical debt and

make sure the style, font, and spacing of the toolbars are always consistent.

In the first example, the developer knew that she made the code work after refac-
toring but that she also introduced another problem. She created a technical debt
item to alert everyone on the team, assigned it to herself, and went back and fixed it
the next day. In the second example, the developer had a solution, opened a technical
debt item, and described its benefits along with the recommended refactoring.

Refactoring is an approach commonly used by teams to bundle known technical
debt issues with other changes and reduce them as code is improved. While refactor-
ing does not resolve deeply rooted architectural issues, it can be an effective tech-
nique for improving maintainability and code quality and eliminating some common
problems before they become costly.

From the Library of Jan Wielemans

ptg47401904

Architecture, Production, and Unintentional Technical Debt 185

Architecture, Production, and Unintentional
Technical Debt

We have established that the most expensive technical debt is at the architecture
level. Today, a good architecture practice can be summarized as a deliberate and con-
tinuous focus on architecture issues, not a massive up-front design. Architecture
design is not a point in time but an activity that is integrated with a project and that
may continue while the system is in operation. Your choices of technology, frame-
works, integration, and deployment pipeline will all encapsulate architectural deci-
sions and enable or hinder quality attribute requirements. Here we call out some
practices that are essential to understanding the design trade-offs that are part of
architecting:

 • Eliciting quality attribute requirements that drive the software design and
quality

 • Incorporating iterative incremental design into release planning

 • Aligning the architecture and production infrastructure

 • Documenting to address stakeholder needs

 • Incorporating lightweight analysis and conformance checking throughout

Quality Attribute Requirements

Producing high-quality systems and managing their technical debt closely depend on
understanding their architecturally significant requirements. Quality attribute
requirements are the architecturally significant requirements for the system that
affect its run-time behavior, system design, and long-term evolvability. There is no
shortage of taxonomies and definitions to guide you in requirements specification
(for example, IEEE 830-1998: Recommended Practice for Software Requirements
Specifications).

Establishing a common understanding of quality attribute requirements allows
teams to design for them and, more importantly, understand the short-term and
long-term architectural weakest links. Designing for these requirements that drive
the system structure and behavior is often an ad hoc practice. Organizations often
do not allow time to explicitly focus on quality attribute requirements, and this can
result in significant amounts of technical debt as the project progresses. Designing
with security, scalability, and maintainability in mind is not a trivial task.

From the Library of Jan Wielemans

ptg47401904

Chapter 12 Avoiding Unintentional Debt186

Several established techniques can augment existing team requirement manage-
ment practices that focus on quality attribute requirements. Those that are elicited
from key stakeholders and represented as scenarios provide a quantifiable definition
and specific prioritization of the architecturally significant requirements. Agile soft-
ware development processes can incorporate quality attribute requirements as user
stories when a system’s run-time qualities are visible to the user or as technical sto-
ries when a team is focused on internal structural issues.

Iterative, Incremental Design in Release Planning

Reasoning about architecture alternatives and using the architecture to guide imple-
mentation choices during release planning provide opportunities for handling tech-
nical debt strategically. Explicitly defining tasks related to realizing quality attribute
requirements in development iterations and release planning is key. Failing to allo-
cate time blocks for architecting is a recipe for unintentional technical debt.

Modern software development approaches acknowledge the critical and strate-
gic importance of architecting. For example, the Scaled Agile Framework (SAFe®)
defines the architectural runway as the production infrastructure, architecture, and
code that are essential for near-term features and functionality. It recommends allo-
cating time in sprints to create and extend the runway as needed to support the devel-
opment of the features that depend on it.

Systems with a smaller scope and smaller teams, such as Atlas, may need a shorter
architectural runway. Especially in the face of uncertain requirements for technology
or features, it may be more efficient for the team to try something out, get feedback,
and refactor as needed than to invest more time in trying to discern requirements
that are in flux.

Systems with a larger scope and larger teams, such as Tethys, need a longer run-
way. Building infrastructure and re-architecting the software take longer than a single
iteration or release cycle. Delivering planned functionality is more predictable when
the structure for the new features is already in place. This requires looking ahead in
the planning process and investing in architecture work in the present iteration that
will support future features that the customer needs.

An explicit focus on allocating architecture tasks driven by quality attribute
requirements will support the development team in making design trade-offs wisely
and taking on technical debt strategically. Understanding the state of a development
effort focuses teams on architectural design. It is desirable for development teams
to reach a software development tempo in which each release delivers value as new
functionality or improvement to the stakeholders. Initially this state does not exist.
Teams need to build platforms and frameworks, establish architectural patterns, and
make decisions about structure and its implementation.

From the Library of Jan Wielemans

ptg47401904

Architecture, Production, and Unintentional Technical Debt 187

A key enabler to achieving iterative, incremental design requires the following:

 • Understanding the short-term and long-term goals of the business and,
therefore, the key quality attribute requirements: Quantitative response
measures and priorities for quality attribute requirements will help teams
establish design strategies for these requirements.

 • Eliciting quality attributes as early as possible in the project: They should
be prioritized based on technical difficulty and value to the business and revis-
ited at least at each release point.

 • Understanding the dependencies between technical constraints, products
used, and these requirements: This is an ongoing activity because dependen-
cies are often not immediately apparent as the devil is in the details. Light-
weight analysis approaches incorporated into sprint retrospectives will help
uncover these dependencies.

Aligning the Architecture and Production Infrastructure

Another essential aspect of the architectural runway is the production infrastructure
and the tooling needed to achieve continuous integration, continuous deployment,
and monitoring. Recognizing how the software aligns with the release process and
production infrastructure will make continuous delivery and its tooling easier to
achieve. At a minimum, employing parameterization, self-monitoring, and self-
initiating version updates will enable teams to avoid technical debt in production
environments:

 • Parameterization focuses on environmental variables relevant to the produc-
tion infrastructure, such as databases and server names. It allows a team to
defer binding time and change aspects of the build and production environ-
ment without having to change the build.

 • Self-monitoring allows for monitoring the system performance and faults as it
runs and when it gets out of sync. Both the production infrastructure and the
architecture of the system can take advantage of load balancing, logging, and
redundancy tactics to realign the allocation and improve system behavior.

 • Self-initiated version updating allows a team to run scripts that update the
 relevant versions of the software in production. Versioning becomes an issue
particularly at scale and when continuous integration and deployment is a
goal. The clients and the main applications may get out of sync, as may the
supporting tooling environment.

From the Library of Jan Wielemans

ptg47401904

Chapter 12 Avoiding Unintentional Debt188

Documentation

For many systems, some documentation exists, but it has rapidly become discon-
nected from the running software. Under schedule pressure, it is all too common for
a team to jettison updates to the documentation and use that time to fix one last
defect. Consequently, documentation suffers from several problems:

 • It rarely helps authors immediately (“I know this, and I can remember it for
several weeks or months”), so they have no immediate incentive to spend the
time and effort writing documentation.

 • What is obvious to one developer may be counterintuitive to another.

 • Diagrams take time to create and are tedious to update, even though they pro-
vide high value for the reader.

 • Documentation is not trusted because it is assumed to be out of date. For some
organizations, this is a cultural issue.

Make sure you document what is actually useful. Developers can read the code,
so do not create massive amounts of documentation that just paraphrases what is in
the code. However, new developers may have a hard time understanding a large body
of code, and they can benefit from “roadmaps” to help them navigate the code and
get the big picture of how it works. They also need explanations of key design deci-
sions, so they can integrate this original reasoning into their own designs. This is the
role of a software or system architecture document, along with some accompanying
design guidelines. The architecture document should include documentation about
key interfaces in the system: the APIs. Another key document should describe the
development process, from end to end, including production.

Project management discipline is the key to writing and maintaining documenta-
tion. Here are a few heuristics for deciding what documents a development team
should produce and how to maintain them:

 • No write-only documents: If no one will ever use it, do not waste time devel-
oping it and maintaining it.

 • Single point of maintenance: Do not force developers to change information
in multiple places. Part of the documents can be generated by tools; for exam-
ple, diagrams representing the structure can be “decompiled” from the code.

 • Version control: Documentation should be under configuration management,
just like the rest of the system.

 • Mandatory updates: Release to production should be blocked if vital docu-
mentation steps are not completed.

From the Library of Jan Wielemans

ptg47401904

Architecture, Production, and Unintentional Technical Debt 189

Lightweight Analysis and Conformance

Analyzing the codebase for conformance to the architecture and design should be
part of the routine iteration and sprint reviews. A focus on quality attribute require-
ments will provide the goals to be met and a strategic perspective on design trade-
offs. If appropriate, listing the trade-offs and risks identified by analysis as technical
debt items will provide additional elements to monitor and manage on the product
backlog.

At a minimum, the team should establish the following:

 • Module interfaces and responsibilities

 • Conformance guidelines, from module to code

 • Key design decisions, architecture decisions, and technical constraints

Lightweight analysis allows a team to assess the trade-offs that may turn into
technical debt. Every architecture approach used to improve one quality attribute can
negatively impact others:

 • Putting everything that needs to change in one place may introduce unnec-
essary dependencies to other components. This is bad for security and other
types of changes.

 • Data structures with generic interfaces may impose a performance penalty.

 • Versioned interfaces increase complexity, which is more difficult to test and
increases the chance of system crashes.

The team needs to be aware of these issues, mitigate them, and document them.
Lightweight review of the system with regard to quality attribute requirements
uncovers such issues early and gives the team opportunities to address them before
they become technical debt or to explicitly take them on as intentional technical debt
items.

At a minimum, the team should understand the principles of lightweight architec-
ture and design analysis:

 • Important quality attribute properties of the architecture need to be evaluated.
The important qualities are derived from the business goals.

 • Quality attribute scenarios translate business goals into required quality attrib-
ute properties.

From the Library of Jan Wielemans

ptg47401904

Chapter 12 Avoiding Unintentional Debt190

 • Quality attribute scenarios help identify relevant components of the architec-
ture to analyze.

 • Architectural approaches with their quality attribute properties should be
clear to the team, as should the side effects and trade-offs of those architec-
tural approaches.

 • Mismatches between architecture properties and scenarios become risks to the
business goals and potential technical debt items.

Leveraging Agile Practices to Manage Technical Debt at Scale
by Robert Eisenberg

I spent over 30 years in software development for large, high-reliability and
long-lived systems in the defense industry. Programs such as these have par-
ticular challenges related to technical debt. The challenges begin with the
long-lived nature itself, which can span decades and is thus subject to “soft-
ware decay.”

Software decay occurs when a fairly clean architecture, design, or imple-
mentation slowly degrades over time as successive changes are made, each one
implemented with a focus on getting it done in the cheapest, quickest, least-
likely-to-have-an-impact way possible to meet the customer’s immediate needs.
Each change creates a little more technical debt, and the debt compounds over
time, slowly corrupting the original architecture, design, and implementation.
Once the debt becomes burdensome, customers (and internal management)
often resist remediation since they expect to be paying for new features, not
debt remediation, which they often mistakenly blame on prior shoddy work.

You might think that the inherent nature of these high-reliability systems
would lead to less technical debt, but that is not necessarily the case. Formal
requirements and reliability objectives focus on externally visible character-
istics, not the intrinsic product quality and maintainability of the underlying
software (unless by chance there are requirements for such, which is rare).
These systems can also be subject to extreme schedule pressure against a fixed
set of requirements and cost baseline. Thus, technical debt can be as signifi-
cant an issue on these types of systems as any other.

So, suppose you’re on a large, long-lived program, and you think you have
a technical debt problem. Now what? What are some strategies for getting
started? Here is some of what I’ve learned. First, let’s start with what not
to do. Don’t try to perform a comprehensive analysis of your multimillion-
line software product in order to determine total technical debt and develop
a comprehensive remediation plan. Getting an overall perspective can be

From the Library of Jan Wielemans

ptg47401904

Architecture, Production, and Unintentional Technical Debt 191

insightful, but you can also quickly get wrapped around the axle in terms
of actionable outcomes. The data can be mind-numbing, and the scope of
the problem can seem insurmountable, especially for program managers
concerned with the cost and schedule for new features. Showing that you’ve
built up millions of dollars in technical debt (principal) isn’t useful or action-
able; estimating future interest is guesswork at best. Trust me, I’ve tried this
approach without much success.

I believe in agile values and their applicability to the technical debt chal-
lenge. You should approach debt identification and remediation in an incre-
mental and iterative manner, growing your practices and methods based on
experience in execution. Programs applying agile frameworks and practices
have many opportunities for “baking in” technical debt practices and growing
them over time, including the following:

 • Definition of done criteria: Initially include criteria for identification of
any existing debt uncovered during feature and story development. This
will help identify the “visible debt”—that is, the debt that became a visible
hindrance during normal development. These debt items should be docu-
mented, ideally in the program backlog tracking tool, as “debt stories.”
A “no new debt” criterion can also be included to prevent debt from growing.
And if new debt is unavoidable for some reason, then it, too, should be
documented with a debt story. What is considered technical debt is often
initially subjective based on collective team experience with the program
and good software craftsmanship, but it may later be augmented with
measurables (for example, from static analysis, other tools, or formal anal-
ysis methods). I encourage teams to apply the “scout rule” for camping to
software: Always leave the code a little cleaner than you found it. I recom-
mend including debt actions (stories) in the same tracking tool as all other
work and as part of a single program or team backlog. Our agile-inspired
phrasing is “all work is work; all work goes on the backlog.”

 • Definition of ready: Before starting a new feature or story, check the back-
log to identify any known debt items that should be considered during
implementation because they impact the same area of the code or would
otherwise impede its development. In addition, make debt consideration
part of the standard design and product size estimation processes dur-
ing planning (for example, feature and story pointing). These processes
will help make debt prevention and remediation more proactive since they
occur before development has begun.

(continued)

From the Library of Jan Wielemans

ptg47401904

Chapter 12 Avoiding Unintentional Debt192

 • During planning: Planning occurs at many levels. I’ll start at the lowest
level and work up. During team-level planning (for example, sprint plan-
ning), look to include previously identified debt remediation stories asso-
ciated with the code being updated. When discussing story size, be sure to
consider the effort to prevent any new debt. I’ve seen some teams allocate
a small percentage of capacity each sprint or program increment (using
SAFe® terminology) to debt remediation. During program increment (or
equivalent) planning is the time to consider larger debt prevention and
remediation items, such as those associated with more substantial archi-
tecture or design changes. Here again, consider necessary debt remediation
and prevention when sizing the bigger chunks of work (such as features).
At the highest level of program planning, one of the key factors I’ve seen
is to evaluate the existing debt within any planned reuse code (for exam-
ple, code being reused from a prior program or Independent Research And
Development (IRAD) project). Too often programs fail to consider and
include the costs necessary to refactor the reuse code to maintain internal
product integrity during the necessary modification and enhancement.

 • During retrospectives: Ask team members if they uncovered any debt dur-
ing the development. This is often the time when debt is identified related
to the development infrastructure or other facets that aren’t directly
associated with the primary codebase. Once again, create debt remedia-
tion stories as required. Teams can use retrospectives to look for trends in
prior debt stories (for example, common root causes). They can track and
monitor the overall volume of debt stories, considering questions such as
“Is our debt getting too high?” and “Is our debt backlog growing, maybe
because we never prioritize those stories?” and “Is increasing debt measur-
ably affecting our velocity?” Retrospectives, especially at longer intervals
(such as program increments), can also be an opportunity to look at things
like the occurrences of bad fixes (that, perhaps, introduced a new problem
or undesirable behavior) or new capabilities that had high debt rates after
the team thought the system was done. Both can be indicators of high debt
in the underlying code.

Collectively these steps help make debt consideration part of normal devel-
opment rhythms and practices and not something separate. I have found this
type of integration of debt management important for success. The steps also
help bring focus to the debt that affects the developers the most. A portion of

From the Library of Jan Wielemans

ptg47401904

For Further Reading 193

the product with high debt in terms of principal but that functions correctly
and requires no modification will generally be ignored by this approach,
which is appropriate because that debt effectively has no interest payment.

So, if you aren’t sure where to start or if you have a lot of barriers, start
small. Add a few basic debt identification, quantification, remediation, and
prevention techniques to your normal development rhythms. Then use what
you’ve learned to improve over time, increasing the use of techniques and
strategies that provide the most value.

What Can You Do Today?

Not following established software engineering practices will result in reckless and
unintentional technical debt. This chapter highlights essential practices that you can
incorporate into any development effort. Doing so will help you avoid unintentional
technical debt and take on intentional debt strategically. Embrace and educate your
teams continuously on bread-and-butter software engineering practices such as code
review, unit testing, and coding standards. And consider automating these practices,
including static analysis of the codebase.

For Further Reading

The concept of the architectural runway is a key practice in SAFe (Leffingwell 2007).
In addition, Stephany Bellomo et al. (2014) describe how to “agilely” design an archi-
tecture, an approach in which reducing the Big Up-Front Design should minimize the
premature technical debt that is incurred.

Adopting the right software development practices for your project will definitely
have a payoff in the long run. For example, Forsgren, Humble, and Kim emphasize
the benefits of adopting a DevOps practice in their 2017 DORA report.

Refactoring existing code enables a development team to get ahead of uninten-
tional technical debt. Scott Ambler (2017) lists this as one of his 11 strategies for
dealing with technical debt as well. Three books provide in-depth review of related
strategies: Martin Fowler’s Refactoring (2018), Joshua Kerievski’s Refactoring to
Patterns (2004), and Michael Feathers’ Working Effectively with Legacy Code (2004).

From the Library of Jan Wielemans

ptg47401904

Chapter 12 Avoiding Unintentional Debt194

Meeting high standards and enforcing good software craftsmanship are increas-
ingly important in our software-intensive world. The ideas presented in this chapter
are embodied in work that discusses how developers should understand and enforce
high standards for their implementation practices. Robert Martin’s Clean Code:
A Handbook of Agile Software Craftsmanship (2008) explains the fundamentals of
writing clean, maintainable code and provides examples. See also Sandro Mancuso’s
The Software Craftsman: Professionalism, Pragmatism, Pride (2014).

From the Library of Jan Wielemans

ptg47401904

195

Chapter 13

Living with Your
Technical Debt

In this final chapter, we describe how you can continue exploring the technical debt
landscape and how to make the management of technical debt an integral part of
your product development activities.

Your Technical Debt Toolbox

By now, you’ve developed a more comprehensive idea of what technical debt is about
and how it affects your software development projects. It is likely that your projects
suffer from technical debt to some extent. But if managed well, technical debt can be
an effective design strategy.

Throughout the book, we have recommended activities that you can do today. But
you may still be asking how all these activities fit together in your particular situation.
The answer is “It depends!” It depends on your role, on the impact the debt has on
the project, on the age of your system, and primarily on where the project needs to
go from where it stands today. While the range of actions you can take is wide, here
is a generic path:

 1. Become aware: Ensure that all the people involved have a common under-
standing of what technical debt is and how it affects any project.

 2. Assess the information: Understand the state of the project, what debt you are
currently facing, what causes it, and what its consequences are.

 3. Build a registry: Build some form of inventory of technical debt.

From the Library of Jan Wielemans

ptg47401904

Chapter 13 Living with Your Technical Debt 196

 4. Decide what to fix: Look over the technical debt registry as you plan a release
for items that will reduce your technical debt and that you will actually tackle.

 5. Take action: Include technical debt identification and management in all soft-
ware development and business governance practices.

Repeat this process, as it is unlikely that you will escape completely debt-free in
one shot.

Does this sound daunting? It does not have to be. At the end of each chapter, we
have introduced some ideas for simple undertakings. Here we revisit them so you can
think more carefully about living with your debt going forward. Having these prac-
tices in your technical debt toolbox will assist you in managing your technical debt.

Depending on the context of your development effort (mostly size, age of the sys-
tem, and external factors, such as the domain), your software development lifecycle
process may be more or less explicit or formal. If you want to explicitly manage the
roles, activities, and artifacts of technical debt in your organization, do not make
dealing with debt a separate process. Integrate it into your process to complement
your current practices.

Proceed in steps, not as a massive change. As the first step, choose what can bring
the most immediate benefits. Consider the effect this choice will have on the people
involved and any learning required. Keep the technical debt timeline in mind as a
guide (see Figure 13.1).

Become Aware

Put a name to your technical debt. Ensure that all the people involved in the project
or close to it have a common understanding of technical debt: what it is, what it is
not, and how it affects the project. This is important because today many people

Time

Occurrence Awareness Tipping Point Remediation

T1 T2 T3 T4

BLISSFUL IGNORANCE SUFFERING FROM DEBT DEBT-FREE

GETTING VALUE OUT OF DEBT

Technical Debt Net Liability

Technical Debt Net Asset
TECHNICAL DEBT

Figure 13.1 Timeline for an organization incurring unintentional technical debt

From the Library of Jan Wielemans

ptg47401904

Your Technical Debt Toolbox 197

have heard about technical debt from various sources and developed their own ideas
of what it means. Use the definition we give in Chapter 2, “What Is Technical Debt?”

The following are some ways to raise awareness:

 • Provide a clear, simple definition of technical debt in the context of your
project.

 • Educate the team about technical debt and its causes.

 • Educate the people in the immediate project environment (management,
analysts, and product managers) about technical debt.

 • Create a “techdebt” category in your issue tracking system, distinct from
defects or new features.

 • Include known technical debt as part of your long-term technology roadmaps.

 • Extend awareness activities to any external contractors who are part of the
project.

Use approaches that increase team communication and help get everyone on the
same page conceptually. You might want to organize a lunch-and-learn session with
your team to introduce the concept of technical debt. Illustrate this with examples
from your own project. A Technical Debt Credit Check can provide a quick look at
the overall project and guidance on where to start (see Chapter 11, “Technical Debt
Credit Check”).

Assess the Information

Before attempting technical debt remediation, objectively assess the state of the pro-
ject. Depending on where you are on the technical debt timeline, you may consider
the following possibilities:

 • Establish the goals and criteria against which technical debt will be assessed
(see the section “Understanding the Business Context for Assessing Technical
Debt” in Chapter 4, “Recognizing Technical Debt”).

 • Monitor your portfolio by analyzing code, architecture, and production infra-
structure to understand the technical debt responsible for the symptoms the
team is experiencing (see Chapters 5, “Technical Debt and the Source Code,” 6,
“Technical Debt and Architecture,” and 7, “Technical Debt and Production”).

 • Incorporate lightweight checks to continuously monitor technical debt (see
Chapter 12, “Avoiding Unintentional Debt”).

From the Library of Jan Wielemans

ptg47401904

Chapter 13 Living with Your Technical Debt 198

A wide range of activities, including the following, can help you assess the infor-
mation you gather about technical debt:

 • Understand the business context to guide the use of source code and analysis
tools as input for technical debt analysis.

 • Create coding, architecture, and production infrastructure standards to serve
as the yardstick against which technical debt is measured. Establish thresholds
to identify when the debt level is becoming too high.

 • Develop tests and traceability: requirements, design/code, tests, and test
results.

 • Use tool support to check and enforce some of these guidelines or standards.
Deploy a static code analyzer to detect code smells. And do not panic in the
face of large numbers of warnings. We gave you some strategies to prioritize
these in Chapter 5.

 • Review the architecture. If it is not documented, glean insights from team
knowledge, source code, and the issues being tracked. Use your knowledge of
architectural risk to guide automated analysis of the source code.

 • When fixing a defect or adding a new feature request, look beyond the immedi-
ate implementation to see if longer-term design issues could lead to technical
debt.

 • Organize one-hour brainstorming sessions around the question “What design
decision did we make that we now regret because it is costing us more than we
estimated?” or “If we had to do it again, what should we have done?”

Assessing the information is not a blame game or a whining session; just identify
high-level structural issues, the key design decisions from the past that have turned
into technical debt today. Later the results will help you determine the impact that
technical debt has on your project.

Build a Technical Debt Registry

Introduce a gradual means to build an inventory of technical debt items (see the sec-
tion “Writing a Technical Debt Description” in Chapter 4):

 • Refine the “techdebt” category in your issue tracker into a technical debt
description. Point at the specific software artifacts involved: code, architecture,
or production infrastructure.

From the Library of Jan Wielemans

ptg47401904

Your Technical Debt Toolbox 199

 • Include at least the most common two technical debt subcategories: (1) sim-
ple, localized, code-level debt and (2) wide-ranging, structural, architectural
debt. Point at the software artifacts involved: code, architecture, or production
infrastructure.

 • Standardize on a single form of “Fix me” or “Fix me later” comment in the
source code to mark places that should be revised later. With such comments,
they will be easier to spot by using a tool.

 • Analyze the code and the architecture for the presence of unintentional techni-
cal debt and describe the findings in the technical debt registry.

 • Develop a strategy for prioritizing debt remediation and ensuring that it isn’t
starved.

 • Include technical debt discussions during your iteration reviews and retrospec-
tives and note any technical debt items. Prioritize them as part of your backlog.

 • As you pursue development, make sure to introduce intentional technical debt
items in your registry at the point where you make the decision to incur such
debt.

You may have to do a little bit of this inventory work as you gather information to
get some concrete examples and input data for your assessment.

Decide What to Fix

If you are facing a large and somewhat varied registry of technical debt, you need to
decide what to fix and when. You should base these decisions on your assessment of
the situation, including where you want to bring your software product next. To
make your decisions, you need to gather additional information about remediation
strategies, cost, and the trade-offs involved (see Chapter 8, “Costing the Technical
Debt”).

Review items in the technical debt registry to ensure that it contains the appropriate
items and that they are prioritized to help with the decision of what to deliver next:

 • Refine technical debt items to the level of “story cards” on your backlog and
make them an integral part of your release planning and iteration planning.
Organize your backlog to reflect the four categories of items it contains (see
the sidebar “What Color Is Your Backlog?” in Chapter 4).

From the Library of Jan Wielemans

ptg47401904

Chapter 13 Living with Your Technical Debt 200

 • Estimate not only the cost to pay the technical debt items but also the cost to
not pay them: How much will deferring repayment slow current progress? If
you are not able to provide an actual cost, use some “t-shirt sizing” strategy.

 • Allocate time to service technical debt. You might start with 15% of your itera-
tion budget, but you need to keep in mind that one size does not fit all. At times
you might need to allocate a whole sprint to technical debt reduction; at other
times you might need a lot less time. Monitor your progress and learn from
your experience.

 • Some complex technical debt will have aspects that relate to rework in code,
architecture, and infrastructure. Reduction may require more significant re-
architecting or systemwide refactoring, which you may have to spread across
several iterations.

 • Put a context-dependent payment plan in place; repaying all debt, except
in very small projects, is simply not feasible and is also not the best use of
resources.

 • Show the value of technical debt reduction tasks by how they support high-
value change requests for new features or defect resolution. When choosing
among refactorings, opt for the change that will offer more flexibility for the
future and support more potential evolutions, when economically feasible.

 • Prioritize technical debt items to fix by doing them first in the parts of your
codebase that are the most actively modified. If a subsystem or module will
not be modified as a result of a change scenario in the foreseeable future, do
not fix any technical debt in it, unless the change is a consequence of fixing the
technical debt in a module it depends on.

What you will do now about technical debt can be fully integrated with your
release and iteration planning. As you pay down unintentional debt, you may also
begin to keep or take on some debt with intention as you seek to proactively manage
technical debt (see Chapter 9, “Servicing the Technical Debt”).

Take Action

An integrated technical debt management approach uses your knowledge of your
project context to apply practices specific to your situation. It adds proactive meas-
ures to understand the causes of technical debt and control the introduction of new
debt (see Chapters 10, “What Causes Technical Debt?” and 11, “Technical Debt
Credit Check”). Software engineering practices that are essential to any development
effort will not only help you address the causes of unintentional technical debt but
will also help you avoid it (see Chapter 12).

From the Library of Jan Wielemans

ptg47401904

On the Three Moons of Saturn… 201

Take action to identify and manage technical debt in software development and
business governance practices. The following are some example of the action you
might take:

 • Aim to reduce technical debt at each development cycle by bringing some
 technical debt items into your iteration backlog to keep the level of technical
debt low.

 • Develop an approach for systematic regression testing so that fixing technical
debt items does not risk breaking the code. (This will remove the objection
that “It is not really badly broken, so I won’t fix it.”)

 • Assess your current practices from the perspectives of business, architecture,
development, and organization and identify sources of technical debt to
eliminate.

 • Factor technical debt into business decisions about the opportunity cost of
delaying features and reducing risk liability.

 • Consider taking on intentional technical debt as a short-term or long-term
investment, where appropriate, and plan to manage it.

 • Include indicators of technical debt in any management or overview project
dashboard.

 • Gather key measures of effort or cost associated with technical debt elements
to assist in future decision making.

Start simple and iterate through these activities, incrementally improving the pro-
cess at each iteration and adding sophistication.

Integrating technical debt into your current software development process does
not need to change the lifecycle. You may not create new artifacts, except guidelines
or standards, if you are missing them. Do not create new roles, apart from a possible
“technical debt evangelist” or “technical debt champion” at the beginning. You may,
however, deploy new techniques and tools to support some of the activities, and we
have enumerated a few throughout the previous chapters.

On the Three Moons of Saturn…

Let’s look at what happened in the three companies we have been using as examples
in this book and what we recommend they do now.

From the Library of Jan Wielemans

ptg47401904

Chapter 13 Living with Your Technical Debt 202

Atlas: The Small Startup

The Atlas company became aware of technical debt when it grew to be 15 developers
and experienced some difficulties evolving its product for more diverse consumers.
The 4 founders had not been aware of the accumulation of debt due to the constant
“pivoting” during their early years. More recent hires made the team aware of this,
but the debt remained for many months a vague concept, not brought to any con-
crete action and only a subject of occasional discussion.

One of the founders brought in a consultant who made an initial assessment and
delivered presentations to the whole team. The concept of technical debt became
clearer for everyone. Atlas acquired a static analysis tool (SonarQube) and a struc-
tural analysis tool (Structure 101) and employed a summer student intern to gather
data about debt in the project. The results of this side project showed that the team
could take some easy actions to mitigate some of the major technical debt. These
actions were introduced into two development iterations and involved explicitly put-
ting technical debt story cards on the backlog. But failing to go further led to con-
flicting priorities later, when the team tried to resolve the debt: Some of the major
structural technical debt items are still there, and remediating them seems too daunt-
ing to actually tackle.

The Atlas team should now plan to do the following:

 • Refine its development process to systematically capture technical debt items.

 • Integrate the big-ticket technical debt items into the planning for future
major releases by evaluating the costs associated with remediation and non-
remediation. Some of these items will require allocating several sprints of
effort to complete.

 • Systematically reduce technical debt items for code smells in each iteration or
most iterations. Train the developers to ensure that they do not inject new code
smells.

Phoebe: The Agile Shop with a Successful Product

Phoebe evolved within the “agile” movement, using an improved version of Scrum.
Most developers were aware of technical debt, and from the beginning, they system-
atically included small technical debt items on the backlog. But as the product
became successful and the core team began to shrink in size, with much of the devel-
opment done by external partners, technical debt grew, especially at the structural
level. Today the Phoebe team struggles to manage multiple stakeholders with diverse
requirements, get ahead of changing technology, and sustain a viable product. As a
result, technical debt is accruing, in most cases intentionally.

From the Library of Jan Wielemans

ptg47401904

On the Three Moons of Saturn… 203

While the Phoebe team has been trying to repay the debt by prioritizing technical
debt reduction in major releases, technology lock-in has become a major hindrance
to meeting this goal; decreasing staff size has also been a hindrance. There is also a
lot of inconsistency in how the core team identifies and manages the technical debt.
For example, the team tried using some tools to look into the code quality but did
not sustain their use. Major refactoring releases have eliminated some of the existing
technical debt or made it obsolete, but Phoebe has not communicated this broadly
to its stakeholders, and it is not clear what the team is handling as the top-priority
issues.

The Phoebe team should now plan to do the following:

 • Raise awareness of technical debt and its impact with partners in its ecosystem.

 • Explicitly integrate technical debt management in the process used with and by
the other partners in the ecosystem, including specified tools.

 • Add technical debt indicators in the project dashboard.

 • Integrate the big-ticket technical debt items in the planning for future
major releases by evaluating the costs associated with remediation and
non-remediation.

Tethys: The Global Giant

For many years at Tethys, technical debt was the elephant in the room. Most senior
developers who had been with the project for several years were acutely aware of it,
even though they did not call it “technical debt.” They would in private gladly dis-
cuss with visitors or newcomers some of the technical debt and when it was inten-
tionally incurred. But from a planning perspective, technical debt and its possible
remediation were never on the table and never discussed with the company technical
leadership or the business part of the company.

The code is of rather high quality. The company routinely uses various tools to
assess the code quality and conformance to its coding and design standards. The
technical debt is the result of both intentional structural debt accumulated over the
years and a technological shift: Major design choices now look bad due to the evolu-
tion of technology over some 15 years.

The Tethys team should plan to do the following:

 • Agree on a systematic way to identify and capture technical debt, particularly
complexity of the architecture and technological shift.

 • Develop simple means, like t-shirt sizing to start with, to associate remediation
and non-remediation cost to major technical debt items.

From the Library of Jan Wielemans

ptg47401904

Chapter 13 Living with Your Technical Debt 204

 • Make upper levels of management aware of technical debt and its impact on
the business.

 • Involve the product management team in decision making about technical debt
reduction and decisions about intentionally taking on more technical debt.

 • Conduct a Technical Debt Credit Check and include management and product
management in the assessment.

Technical Debt and Software Development

Your software development organization will become gradually “technical debt
aware.” Ultimately, managing technical debt will become an integral part of your
software development.

If your organization is just beginning the journey toward managing technical
debt, your startup costs will be higher. To get started, at a minimum, you should
plan to do the following:

 1. Understand the state of the development process and its alignment with busi-
ness goals (see Chapter 10).

 2. Identify technical debt items (see Chapters 5, 6, and 7), including selecting
practices and tools to support this activity.

 3. Incorporate technical debt as a major input into software development deci-
sions (see Chapter 9).

 4. Educate all stakeholders inside the development team and at its immediate
periphery about technical debt and its consequences (see Chapter 4).

If your organization is already technical debt aware, you can plan to do the
following:

 1. Readily identify intentional debt at the point of occurrence and record it (see
Chapters 10 and 12).

 2. Regularly monitor the design and the code for new and accumulating technical
debt and record any detected technical debt items (see Chapters 5, 6, 7, and 11).

 3. Spread debt reduction across the development lifecycle (see Chapter 9).

 4. Collect metrics on indicators that may point to symptoms of technical debt, such
as velocity, lingering defects, and high development estimates (see Chapter 4).

From the Library of Jan Wielemans

ptg47401904

Finale 205

The timeline for a technical debt-aware organization shown in Figure 13.2 shows
technical debt being taken on, monitored, and remediated with intention.

An iterative development lifecycle, which is a core feature of agile approaches,
offers better opportunities to manage technical debt continuously. The repayment
of small technical debt items can be spread over multiple iterations in a single release
cycle. However, larger technical debt items—such as architectural ones—may not
fit easily in a short iteration cycle. You may be tempted to defer them because they
are too disruptive to the rapid pace of development. (This is often the case with
architectural activities and is not specific to the architectural debt reduction.) Resist
the temptation to incur lots of technical debt in an effort to be more responsive to
change requests.

Finale

Technical debt is at the root of the friction we described in Chapter 1, “Friction in
Software Development”: the phenomenon that gradually slows down software devel-
opment teams. Technical debt is simply unavoidable, especially in large and long-
lived systems, and even more so in successful systems.

Technical debt has proven to be a useful concept for helping developers and man-
agers approach these issues. Drawing from a financial metaphor, the concept of
technical debt shifts decision making from a strict economic standpoint or a pure
technical standpoint to a place where various parties can better understand the
trade-offs and compromises, assess the current state of development, and determine
the way forward.

Technical debt can be an effective tool to sprint to a major short-term milestone—
achieving some success very rapidly by borrowing time from the future—and, in this
sense, it looks more like debt used as an investment. The problems start to arise later,
when the debt is quickly forgotten and not repaid promptly.

Time

Occurrence
Awareness Tipping PointRemediation

T1
T2

T4T3

DEBT TAKEN WITH INTENTION

GETTING VALUE OUT OF DEBT

Technical Debt Net Liability

Technical Debt Net Asset

TECHNICAL DEBT

Figure 13.2 Timeline for a technical debt-aware organization

From the Library of Jan Wielemans

ptg47401904

Chapter 13 Living with Your Technical Debt 206

In this book, we have identified a small number of principles to help you better
understand and deliberately manage technical debt:

Principle 1: Technical debt reifies an abstract concept.
Principle 2: If you do not incur any form of interest, then you probably do not

have actual technical debt.
Principle 3: All systems have technical debt.
Principle 4: Technical debt must trace to the system.
Principle 5: Technical debt is not synonymous with bad quality.
Principle 6: Architecture technical debt has the highest cost of ownership.
Principle 7: All code matters!
Principle 8: Technical debt has no absolute measure—neither for principal nor

interest.
Principle 9: Technical debt depends on the future evolution of the system.

Sustaining the pace of innovation while ensuring software quality involves estab-
lishing technical debt management as a core software engineering practice. There is
growing interest in research, practice, and tool support for managing technical debt.
Most of this research can be done only in an industrial environment; the kind of
issues we are dealing with cannot be reproduced in a small laboratory experiment.
We invite you to join the technical debt community and contribute case studies, sto-
ries of technical debt, and practices associated with managing it. A good starting
point is the website techdebtconf.org.

From the Library of Jan Wielemans

http://techdebtconf.org

ptg47401904

207

Glossary

accruing interest—Additional costs incurred by building new software that depends
on an element of technical debt, a nonoptimal solution. These costs accumulate over
time into the initial principal to lead to the current principal (accretion).

artifact—See development artifact.

business goal—A high-level objective that a stakeholder in a software product
development effort wants to achieve.

cause—The process, decision, action, lack of action, or event that triggers the
existence of a technical debt item.

compounding interest—See accruing interest.

consequence—The effect on the value, quality, or cost of the current or the future
state of a system associated with technical debt items.

context—The set of economic, sociological, cultural, and technical factors that are not
strictly under control of the project but have a strong influence on the project evolution.

cost—The cost of developing or maintaining a product, which mostly consists of
paying the people who work on it. Cost is often approximated for planning purposes
by using a system of points as a proxy for actual financial cost.

developer—Any person involved directly with the development of software: archi-
tects, designers, coders, testers, and so on.

development artifact—An element of a system or the supporting work products:
design, code, documentation, tests, defect records, and so on.

feature—A chunk of functionality that delivers business value.

interest—See accruing interest and recurring interest.

point—A unit of measure of the development cost of a planned system.

principal—The cost savings gained by taking some initial approach or shortcut in
development (the initial principal) or the cost it would take now to develop a solution
(the current principal).

From the Library of Jan Wielemans

ptg47401904

Glossary208

product—A complete system that is ready to be delivered or commercialized.

quality—The degree to which a system, component, or process meets customer or
user needs or expectations (IEEE Standard 610).

recurring interest—Additional costs incurred by a project in the presence of techni-
cal debt, due to reduced productivity (or velocity), induced defects, or loss of quality
(maintainability and evolvability). These are sunk costs that are not recoverable
through remediation.

registry—For a software system, an inventory of technical debt items typically stored
in a tool, such as an issue tracker or project backlog management system.

remediation—The removal of a technical debt item. Its cost is the associated current
principal and any accrued interest associated with it.

stakeholder—Any party—person or organization—that is affected by or that
influences a development project.

symptom—An observable qualitative or measurable consequence of technical debt
items.

system—A set of connected, engineered artifacts that form a complex whole. In this
book, system refers to the software-intensive system under development that will
ultimately become the product.

technical debt—1. The complete set of technical debt items associated with a sys-
tem. 2. In software-intensive systems, design or implementation constructs that are
expedient in the short term but that set up a technical context that can make a future
change more costly or impossible. Technical debt is a contingent liability whose
impact is limited to internal system qualities, primarily, but not only, maintainability
and evolvability.

technical debt description—A systematic way of capturing a technical debt item
and its (known) properties.

technical debt item—One atomic element of technical debt connecting a set of
development artifacts with consequences for the quality, value, and cost of the
 system and triggered by one or more causes related to process, management, context,
 business goals, and so on.

value—The business value derived from the ultimate consumers of the product: its
users, or acquirers, the people who are going to pay to use it, and the perceived utility
of the product.

From the Library of Jan Wielemans

ptg47401904

209

References

Alan, D. R., Wixom, B. H., & Tegarden, D. (2012). Systems analysis and design
with UML, Version 2.0: An object-oriented approach (4th ed.). Hoboken, NJ:
Wiley.

Al-Barak, M., & Bahsoon, R. (2016). Database design debts through examining
schema evolution. In Proceedings of the IEEE Eighth International Workshop on
Managing Technical Debt (pp. 17–23). Piscataway, NJ: IEEE Computer Society
Press.

Albrecht, A. J., & Gaffney, J. R. (1983). Software function, source lines of code, and
development effort prediction: A software science validation. IEEE Transactions
on Software Engineering, 9(6), 639–648.

Ambler, S. (2017). 11 strategies for dealing with technical debt. Retrieved from
http://www.disciplinedagiledelivery.com/technical-debt/

Ambler, S. W. (2011). Agility at scale. Become as agile as you can be. Retrieved from
https://www.ibm.com/developerworks/community/blogs/ambler?lang=en

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., Abrahamsson,
P., Martini, A., …Systä, K. (2016). The perception of technical debt in the embed-
ded systems domain: An industrial case study. In Proceedings of the 2016 IEEE 8th
International Workshop on Managing Technical Debt (pp. 9–16). Piscataway,
 NJ: IEEE Computer Society.

Arcelli-Fontana, F., Ferme, V., Zanoni, M., & Roveda, R. (2015). Towards a prior-
itization of code debt: A code smell Intensity Index. In Proceedings of the IEEE
Seventh International Workshop on Managing Technical Debt (pp. 16–24).
Piscataway, NJ: IEEE Press.

Arulraj, J. (2018). SQL Check. https://github.com/jarulraj/sqlcheck
Avgeriou, P., Kruchten, P., Ozkaya, I., & Seaman, C. (Eds.). (2016). Managing tech-

nical debt in software engineering (Dagstuhl Seminar 16162). Dagstuhl Reports
(Vol. 6, pp. 110–138). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
für Informatik. http://dx.doi.org/10.4230/DagRep.6.4.110

Baldwin, C. Y., & Clark, K. B. (2000). Design rules: The power of modularity.
Cambridge, MA: MIT Press.

Basili, V. R., Caldiera, G., & Rombach, D. (1994). The Goal Question Metric
approach. In R. Van Solingen (Ed.), Encyclopedia of Software Engineering
(pp. 528–532). Hoboken, NJ: Wiley.

From the Library of Jan Wielemans

http://www.disciplinedagiledelivery.com/technical-debt/
https://www.ibm.com/developerworks/community/blogs/ambler?lang=en
https://github.com/jarulraj/sqlcheck
http://dx.doi.org/10.4230/DagRep.6.4.110

ptg47401904

References210

Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in practice
(3rd d.). Reading, MA: Addison-Wesley.

Bass, L., Weber, I., & Zhu, L. (2016). DevOps: A software architect’s perspective.
Boston: Addison-Wesley Professional.

Bavota, G., & Russo, B. (2016). A large-scale empirical study on self-admitted tech-
nical debt. In Proceedings of the 2016 IEEE/ACM 13th Working Conference on
Mining Software Repositories (pp. 315–326). New York: ACM.

Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler, B., Seyff, N.,
& Venters, C. (2015). Sustainability design and software: The Karlskrona Mani-
festo. In Proceedings of the 37th International Conference on Software Engineer-
ing, Vol. 2 (pp. 467–476). Piscataway, NJ: IEEE Press.

Bellomo, S., Kruchten, P., Nord, R. L., & Ozkaya, I. (2014). How to agilely architect
an agile architecture. Cutter IT Journal, 27(2), 12–17.

Bellomo, S., Nord, R. L., Ozkaya, I., & Popeck, M. (2016). Got technical debt? Sur-
facing elusive technical debt in issue trackers. In Proceedings of the 2016 IEEE/
ACM 13th Working Conference on Mining Software Repositories (pp. 327–338).
New York: ACM.

Bergey, J., Cohen, S., Donohoe, P., & Jones, L. (2005). Software product lines:
Experiences from the Seventh DoD Software Product Line Workshop (CMU/
SEI-2005-TR-001). Pittsburgh: Software Engineering Institute.

Beyer, B., Jones, C., Petoff, J., & Murphy, N. R. (Eds.). (2016). Site reliability engi-
neering. Sebastopol, CA: O’Reilly.

Boehm, B., Clark, B. K., Brown, A. W., & Abts, C. (2000). Software cost estimation
with Cocomo II. Upper Saddle River, NJ: Prentice Hall.

Booch, G. (2000). The future of software (abstract). In Proceedings of the 22nd
International Conference on Software Engineering (p. 3). New York: ACM.

Brooks, F. P. (1986). No silver bullet—Essence and accident in software engineering.
In H.-J. Kugler (Ed.), Proceedings of the IFIP Tenth World Computing Confer-
ence (pp. 1069–1076). Amsterdam: Elsevier Science B.V.

Brooks, F. P. (1995). The mythical man-month: Essays on software engineering
(anniversary ed.). Reading, MA: Addison-Wesley.

Brown, S. (2018). Software architecture for developers. Vancouver, BC: Leanpub.
Cervantes, H., & Kazman, R. (2016). Designing software architectures: A practical

approach. Boston: Addison-Wesley Professional.
Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,…Stafford, J.

(2011). Documenting software architectures: Views and beyond (2nd ed.). Read-
ing, MA: Addison-Wesley.

Clements, P., Kazman, R., & Klein, M. (2001). Evaluating software architectures:
Methods and case studies. Reading, MA: Addison-Wesley.

From the Library of Jan Wielemans

ptg47401904

References 211

Cohn, M. (2016). What are story points? Retrieved from https://www.mountain-
goatsoftware.com/blog/what-are-story-points

Consortium for IT Software Quality (CISQ). http://it-cisq.org/
Cunningham, W. (1992). The WyCash Portfolio Management System. Presented

at OOPSLA 1992, Vancouver. Available at http://dl.acm.org/citation.
cfm?id=157715

Davis, A. M. (1995). 201 principles of software development. New York:
McGraw-Hill.

Dijkstra, E. W. (1972). The humble programmer. Communications of the ACM,
15(10), 859–866.

Fairbanks, G. (2010). Just enough software architecture: A risk-driven approach.
Boulder, CO: Marshall & Brainerd.

Fayolle, J. P., Coq, T., & Letouzey, J.-L. (2018). The Agile Alliance debt analysis
model (A2DAM). Agile Alliance. Retrieved from https://www.agilealliance.org/
the-agile-alliance-debt-analysis-model/

Feathers, M. (2004). Working effectively with legacy code. Upper Saddle River, NJ:
Pearson Education.

Ford, N., Parsons, R., & Kua, P. (2017). Building evolutionary architectures:
Support constant change. Sebastopol, CA: O’Reilly Media.

Forsgren, N., Humble, J., & Kim, G. (2017). Forecasting the value of DevOps trans-
formations: Measuring ROI of DevOps. Beaverton, OR: DevOps Research and
Assessment (DORA).

Fowler, M. (2003). Technical debt. Retrieved from http://martinfowler.com/bliki/
TechnicalDebt.html

Fowler, M. (2009). Technical debt quadrants. Retrieved from https://martinfowler.
com/bliki/TechnicalDebtQuadrant.html

Fowler, M. (2018). Refactoring: Improving the design of existing code. Reading,
MA: Addison-Wesley.

Freeman, S., & Matt, C. (2014). Is unhedged call options a better metaphor for
bad code? InfoQueue. Retrieved from https://www.infoq.com/news/2014/12/
call-options-bad-code

Gibbs, W. W. (1994). Software’s chronic crisis. Scientific American, 271(3), 72–81.
Glass, R. L. (2003). Facts and fallacies of software engineering. Boston:

Addison-Wesley.
Google. (2018). Google Java standard guide. Retrieved from https://google.github.

io/styleguide/javaguide.html
Gorton, I. (2006). Essential software architecture (2nd ed.). Berlin: Springer.
Grenning, J. (2002). Planning poker. Retrieved from https://wingman-sw.com/

papers/PlanningPoker-v1.1.pdf

From the Library of Jan Wielemans

https://www.mountain-goatsoftware.com/blog/what-are-story-points
https://www.mountain-goatsoftware.com/blog/what-are-story-points
http://it-cisq.org/
http://dl.acm.org/citation.cfm?id=157715
http://dl.acm.org/citation.cfm?id=157715
https://www.agilealliance.org/the-agile-alliance-debt-analysis-model/
https://www.agilealliance.org/the-agile-alliance-debt-analysis-model/
http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://www.infoq.com/news/2014/12/call-options-bad-code
https://www.infoq.com/news/2014/12/call-options-bad-code
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html
https://wingman-sw.com/papers/PlanningPoker-v1.1.pdf
https://wingman-sw.com/papers/PlanningPoker-v1.1.pdf

ptg47401904

References212

Guo, Y., Spínola, R. O., & Seaman, C. B. (2016). Exploring the costs of technical
debt management: A case study. Empirical Software Engineering, 21(1), 159–182.

Hastie, S. (2010). What color is your backlog? InfoQ Magazine. Retrieved from
http://www.infoq.com/news/2010/05/what-color-backlog

Highsmith, J. A. (2002). Agile software development ecosystems. Boston:
Addison-Wesley.

Highsmith, J. A. (2010). The financial implications of technical debt. Retrieved
from http://jimhighsmith.com/the-financial-implications-of-technical-debt/

International Organization for Standardization/International Electrotechnical
Commission (IEC). (2009). ISO/IEC 20926:2009 Software and systems engineering—
Software measurement—IFPUG functional size measurement method. Geneva,
Switzerland: ISO.

International Organization for Standardization/International Electrotechnical
Commission. (2011). ISO/IEC 25010:2011 Systems and software engineering—
Systems and software Quality Requirements and Evaluation (SQuaRE)—System
and software quality models. Geneva, Switzerland: ISO/IEC. https://www.iso.
org/standard/35733.html

Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S.,…Shapochka, A.
(2015). A case study in locating the architectural roots of technical debt. In
Proceedings of the International Conference on Software Engineering (ICSE ’15),
Vol. 2. (pp. 179–188). Piscataway, NJ: IEEE Press.

Kerievski, J. (2004). Refactoring to patterns. Boston: Addison-Wesley.
Kim, G., Behr, K., & Spafford, G. (2013). The Phoenix Project: A novel about IT,

DevOps, and helping your business win. Portland, OR: IT Revolution Press.
Kim, G., & Debois, P. (2016). The DevOps handbook: How to create world-class

agility, reliability, and security in technology organizations. Portland, OR: IT
Revolution Press.

Klotins, E., Unterkalmsteiner, M., Chatzipetrou, P., Gorschek, T., Prikladnicki, R.,
Tripathi, N., & Pompermaier, L. B. (2018). Exploration of technical debt in start-
ups. In Proceedings of the 40th International Conference on Software Engineer-
ing: Software Engineering in Practice (pp. 75–84). New York: ACM.

Knodel, J., & Naab, M. (2016). Pragmatic evaluation of software architecture.
Berlin: Springer.

Kruchten, P. (2011). The (missing) value of software architecture. Retrieved from
http://philippe.kruchten.com/2013/12/11/the-missing-value-of-software-architecture/

Kruchten, P. (2013). Contextualizing agile software development. Journal of
Software Evolution and Process, 25(4), 351–361.

Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical debt: From metaphor to
theory and practice. IEEE Software, 29(6), 18–21.

From the Library of Jan Wielemans

http://www.infoq.com/news/2010/05/what-color-backlog
http://jimhighsmith.com/the-financial-implications-of-technical-debt/
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
http://philippe.kruchten.com/2013/12/11/the-missing-value-of-software-architecture/

ptg47401904

References 213

Kruchten, P., Nord, R. L., Ozkaya, I., & Falessi, D. (2013). Technical debt: Towards
a crisper definition; report on the 4th International Workshop on Managing
Technical Debt. SIGSOFT Software Engineering Notes, 38(5), 51–54.

Leffingwell, D. (2007). Scaling software agility: Best practices for large enterprises.
Boston: Addison-Wesley.

Lehman, M. M. (1980). On understanding laws, evolution, and conservation in the
large program lifecycle. Journal of Systems and Software, 1(3), 213–221.

Lehman, M. M. (1996). Laws of software evolution revisited. In C. Montangero
(Ed.), Software Process Technology: Fifth European Workshop (pp. 108–124).
Berlin: Springer.

Letouzey, J.-L. (2016). The SQALE method for managing technical debt: Defini-
tion document (Version 1.1). Retrieved from http://www.sqale.org/wp-content/
uploads/2016/08/SQALE-Method-EN-V1-1.pdf

Letouzey, J.-L., & Ilkiewicz, M. (2012). Managing technical debt with the SQALE
method. IEEE Software, 29(6), 44–51.

Li, Z., Liang, P., & Avgeriou, P. (2015). Architectural technical debt identifica-
tion based on architecture decisions and change scenarios. In Proceedings of
the 12th Working IEEE/IFIP Conference on Software Architecture (WICSA ’15)
(pp. 65–74). Piscataway, NJ: IEEE.

Lim, E., Taksande, N., & Seaman, C. B. (2012). A balancing act: What software
practitioners have to say about technical debt. IEEE Software, 29(6), 22–27.

Mancuso, S. (2014). The software craftsman: Professionalism, pragmatism, pride.
Upper Saddle River, NJ: Prentice Hall.

Martin, R. (2008). Clean code: A handbook of agile software craftsmanship. Upper
Saddle River, NJ: Prentice Hall.

McConnell, S. (2007). Technical debt. Retrieved from https://www.construx.com/
resources/whitepaper-managing-technical-debt/

Morris, K. (2016). Infrastructure as code: Managing servers in the cloud. Sebastopol,
CA: O’Reilly.

Object Management Group. (2017). Automated technical debt measure, Version 1,
Beta 2 (OMG Document Number: admtf/2017-03-01). Retrieved from http://
www.omg.org/spec/ATDM/

Parnas, D. L. (1994). Software aging. In Proceedings of the 16th International
Conference on Software Engineering (pp. 279–287). Los Alamitos, CA: IEEE
Computer Society.

Poort, E. (2014). The business case for technical debt reduction. Retrieved from
https://eltjopoort.nl/blog/2014/01/27/the-business-case-for-technical-debt-reduction/

Poort, E. (2016). Just enough anticipation: Architect your time dimension. IEEE
Software, 33(6), 11–15.

From the Library of Jan Wielemans

http://www.sqale.org/wp-content/uploads/2016/08/SQALE-Method-EN-V1-1.pdf
http://www.sqale.org/wp-content/uploads/2016/08/SQALE-Method-EN-V1-1.pdf
https://www.construx.com/resources/whitepaper-managing-technical-debt/
https://www.construx.com/resources/whitepaper-managing-technical-debt/
http://www.omg.org/spec/ATDM/
http://www.omg.org/spec/ATDM/
https://eltjopoort.nl/blog/2014/01/27/the-business-case-for-technical-debt-reduction/

ptg47401904

References214

Potdar, A., & Shihab, E. (2014). An exploratory study on self-admitted technical
debt. In Proceedings of the 2014 IEEE International Conference on Software
Maintenance and Evolution (pp. 91–100). Piscataway, NJ: IEEE Press.

Ramasubbu, N., & Kemmerer, C. (in press). Integrating technical debt management
and software quality management processes: A normative framework and field
tests. IEEE Transactions on Software Engineering.

Redgate Software Ltd. (2018). SQL Code Guard, 3.0. https://www.red-gate.com/
products/sql-development/sql-code-guard/

Reifer, D. (2001). Making the software business case: Improvement by the numbers.
Upper Saddle River, NJ: Addison-Wesley.

Ries, E. (2011). The lean startup. New York: Crown Business.
Rozanski, N., & Woods, E. (2012). Software systems architecture: Working with

stakeholders using viewpoints and perspectives (2nd ed.). Upper Saddle River,
NJ: Addison-Wesley.

Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., & Jaspan, C. (2018).
Lessons from building static analysis tools at Google. Communications of the
ACM, 61(4), 58–66.

Scaled Agile, Inc. (n.d.). Scaled Agile Framework (SAFe). Retrieved from https://
www.scaledagileframework.com/

Schmid, K. (2013a). A formal approach to technical debt decision making. In
Proceedings of the Ninth International ACM Sigsoft Conference on Quality of
Software Architectures (pp. 153–162). New York: ACM.

Schmid, K. (2013b). On the limits of the technical debt metaphor: Some guidance on
going beyond. In Proceedings of the Fourth International Workshop on Manag-
ing Technical Debt (pp. 63–66). Washington, DC: IEEE Computer Society Press.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D.,…Dennison,
D. (2015). Hidden technical debt in machine learning systems. In C. Cortes, D.
D. Lee, M. Sugiyama, & R. Garnett (Eds.), Proceedings of the 28th International
Conference on Neural Information Processing Systems, Volume 2 (pp. 2503–
2511). Cambridge, MA: MIT Press.

Séguin, N., Tremblay, G., & Bagane, H. (2012). Agile principles as software engi-
neering principles: An analysis. In C. Wohlin (Eds.), LNCS 111, pp. 1–15. Berlin:
Springer.

Shafer, A. C. (2010). Infrastructure debt: Revisiting the foundation. Cutter IT
Journal, 23(10), 36–41.

Sharma, S. (2017). The DevOps adoption playbook: A guide to adopting DevOps in
a multi-speed IT enterprise. Indianapolis: Wiley.

Software Engineering Institute. (2018). SEI CERT secure coding standards.
 Pittsburgh: SEI. https://www.securecoding.cert.org

From the Library of Jan Wielemans

https://www.red-gate.com/products/sql-development/sql-code-guard/
https://www.red-gate.com/products/sql-development/sql-code-guard/
https://www.scaledagileframework.com/
https://www.scaledagileframework.com/
https://www.securecoding.cert.org

ptg47401904

References 215

Tom, E., Aurum, A., & Vidgen, R. (2012a). A consolidated understanding of technical
debt. In Proceedings of the European Conference on Information Systems (Paper 16).

Tom, E., Aurum, A., & Vidgen, R. (2012b). An exploration of technical debt. Jour-
nal of Systems and Software, 86(6), 1498–1516.

Tornhill, A. (2018). Software design x-rays: Fix technical debt with behavioral code
analysis. Raleigh, NC: The Pragmatic Bookshelf.

Visser, J., Rigal, S., van der Leek, R., van Eck, P., & Wijnholds, G. (2016). Build-
ing maintainable software: Ten guidelines for future-proof code. Sebastopol, CA:
O’Reilly Media.

Weber, J., Cleve, A., Meurice, L., & Ruiz, F. J. B. (2014). Managing technical debt
in database schemas of critical software. In Proceedings of the Sixth International
Workshop on Managing Technical Debt (pp. 43–46). Piscataway, NJ: IEEE
Computer Society Press.

Wikipedia. (2018). Software architecture. https://en.wikipedia.org/wiki/Software_
architecture

Zazworka, N., Vetro, A., Izurieta, C., Wong, S., Cai, Y., Seaman, C. B., & Shull, F.
(2014). Comparing four approaches for technical debt identification. Software
Quality Journal, 22(3), 403–426.

Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schröter, A., & Weiss, C.
(2010). What makes a good bug report? IEEE Transactions on Software
Engineering, 36(5), 618–643.

From the Library of Jan Wielemans

https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Software_architecture

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

217

Index

A

A2DAM (Agile Alliance Debt Analysis
Model), 130

abstract concept (Principle 1), technical
debt reifies, 14, 16

accidental database debt, 90
accruing

additional technical debt versus
repaying debt, 25–26

interest on technical debt, 25, 27–29
ACM Turing Award Lecture (1972),

software crisis, 10
action, taking (technical debt toolbox/

process), 196, 200–201
actual technical debt

potential technical debt versus, 32,
33, 138, 140

servicing technical debt, 138, 140
adapters and architectural debt, 97
additional technical debt, accruing

versus repaying debt, 25–26
age of system (context of software

development), 38
agile practices, managing technical debt

at scale, 190–193
all code matters (Principle 7), 107, 206
all systems have technical debt

(Principle 3), 45, 152, 158,
180, 206

amnesty of debt (write offs), 141

analytic models, architectural debt
analysis, 89

analyzing architectural debt, 89, 90
analytic models, 89
checklists, 89
Phoebe case study, 97–98
prototypes/simulations, 89
scenario-based analysis, 89
thought experiments/reflective

questions, 89
analyzing source code

analysis tools, 74–76
Automated Technical Debt Measure

specification, 74–75
business goals, 68

examples of, 68–69
identifying questions about

source code, 70–72
mapping, 69

code inspections, 74
code smells, 66
documenting technical debt items,

76–78
driving analysis questions, 70–72
observable measurement criteria,

72–74
pain points

business goals and pain points,
68–69, 70–72

identifying questions about
source code, 70–72

From the Library of Jan Wielemans

ptg47401904

Index218

analyzing source code (continued)
peer reviews, 74
Phoebe case study, 65–69

analysis tools, 75–76
documenting technical debt

items, 76–78
identifying questions about

source code, 70–72
iterations of analysis, 78–79
observable measurement criteria,

72–74
questions about source code,

identifying, 70–72
refactoring source code, 79–80
SonarQube static analyzer, 75–76
static analyzers, 65–66, 74–75
symptom measures, 72–73
Technical Debt Credit Checks, 66,

68–70
Tricorder static analyzer, 75

Angular, opportunities and risk, 47
AngularJS, opportunities and risk, 47
architectural debt. See also database

debt
adapters and, 97
analysis tools/techniques, 84, 89, 90

analytic models, 89
checklists, 89
Phoebe case study, 97–98
prototypes/simulations, 89
scenario-based analysis, 89
thought experiments/reflective

questions, 89
architectural technical debt has the

highest cost of ownership
(Principle 6), 86, 180

business goals and, 95–96
code analysis, 93–94
concerns/questions, 95–96

conventions (design), 84
designers and, 84, 86–88
documenting, 98–99
gateways and, 97
intentional versus unintentional

debt, 84
measurement criteria, defining,

96–97
modifiability and, 96
modularity and, 83
Phoebe case study, 85, 94–95

analysis tools/techniques, 97–98
business goals and, 95–96
concerns/questions, 95–96
defining measurement criteria,

96–97
documenting debt, 98–99
servicing debt, 98–99

quality attributes/requirements,
84–85

remediating technical debt,
121–122

security and, 96–97
servicing, 98–99
symptoms of technical debt,

84–85
technological gaps, 84, 96

architectural technical debt has the
highest cost of ownership
(Principle 6), 86, 180

architectures
architectural runways, 186
assessing technical debt, 61
context of software development, 38
lack of, example, 7
landscape of technical debt, 21
software engineering practices,

managing technical debt, 185

From the Library of Jan Wielemans

ptg47401904

Index 219

production infrastructure/
architecture alignment, 187

quality attributes/requirements,
185–186

release planning, 186–187
software/system architecture

documents, 188
Technical Debt Credit Check, 171

artifacts
system artifacts, causes of technical

debt versus, 152
technical debt items, 22

assessing
information (technical debt toolbox/

process), 195, 197–198
technical debt

architectures, 61
business context and, 58–60
production, 61–62
source code, 60–61

assignees/reporters (writing technical
debt descriptions), source code
analysis, 57, 58, 77

Atlas case study, 40–42
build and integration debt, 111
causes of technical debt, identifying,

156, 163
chain of causes/effects, 52–53
comparing case studies, 44
contrasting case studies, 40–41
costing technical debt, 117–119
feature delivery versus servicing

technical debt, 139–140
investment, technical debt as,

143–145
production debt, 105
refactoring code, 184
servicing technical debt,

139–140
mitigating risk, 140–141

technical debt as investment,
143–145

technical debt toolbox/process, 202
testing debt, 112

Automated Technical Debt Measure
specification, 74–75

automation
build and integration debt, 107
test automation, development

process-related causes of
technical debt, 160–162

awareness (technical debt toolbox/
process), 195, 196–197

awareness (timeline of technical debt),
33, 53–54

awareness levels of technical debt,
11–12

B

backlogs, 62–63, 127–129
balance and database performance, 91
bankruptcy, declaring, 141
becoming aware (technical debt

toolbox/process), 195, 196–197
benefit/cost comparisons

costing technical debt, 123
servicing technical debt, 131–132,

139–140
Booch, Grady, 3
build and integration debt, 106

automation, 107
build times, improving, 111
continuous integration, 107

building technical debt registries, 195,
198–199

business context
assessing technical debt, 58–60
changes to (causes of technical

debt), 157

From the Library of Jan Wielemans

ptg47401904

Index220

business goals
architectural debt analysis, 95–96
source code analysis, 68

examples of business goals, 68–69
identifying questions about

source code, 70–72
business models (context of software

development), 38
business vision (Technical Debt Credit

Check), 170
business-related causes of technical

debt, 155
misaligned business goals, 156
requirements shortfall, 156–157
time/cost pressure, 155–156

C

calculating recurring debt, 122–123
case studies, 39–40

Atlas case study, 40–42
causes of technical debt,

identifying, 156, 163
chain of causes/effects, 52–53
comparing case studies, 44
contrasting case studies, 40–41
costing technical debt, 117–119
feature delivery versus servicing

technical debt, 139–140
mitigating risk, 140–141
production debt, 105
refactoring code, 184
servicing technical debt, 139–141,

143–145
technical debt as investment,

143–145
technical debt toolbox/process,

202
contrasting, 40–41
Phoebe case study, 40, 42–43

architectural debt, 85, 94–99
building technical debt registries,

135–136
causes of technical debt,

diagnosing with Technical
Debt Credit Check, 172–173

causes of technical debt,
identifying, 156, 157–158

code quality/standards, 181–183
comparing case studies, 44
contrasting case studies, 40–41
costing technical debt, 119–120,

124–125
duplicate code, handling, 78
mitigating risk, 143
production debt, 105, 110–113
release pipeline, 143
servicing technical debt, 143
source code analysis, 65–69, 77,

78–79
technical debt toolbox/process,

202–203
Tethys case study, 40, 43–44

causes of technical debt,
diagnosing with Technical
Debt Credit Check, 174–177

causes of technical debt,
identifying, 156–157,
160, 164

comparing case studies, 44
contrasting case studies, 40–41
costing technical debt, 127
production debt, 105
technical debt toolbox/process,

203–204
causes of technical debt, 22–23,

151–153
business-related causes, 155

misaligned business goals, 156

From the Library of Jan Wielemans

ptg47401904

Index 221

requirements shortfall, 156–157
time/cost pressure, 155–156

changes in context, 157
business context, 157
evolution, 158–159
technology changes, 157–158

development process-related
causes, 159
ineffective documentation,

159–160
misaligned processes, 162
test automation, 160–162

diagnosing with Technical Debt
Credit Check
Phoebe case study, 172–173
Tethys case study, 174–177

intentional debt, 153–154
main causes of technical debt,

154–155
software development, 152
system artifacts versus causes, 152
team/personnel-related causes,

162–163
distributed teams/personnel, 164
inexperienced teams/personnel,

163–164
undedicated teams/personnel,

164–165
unintentional debt, 153

chain of causes/effects, recognizing
technical debt, 51–54

change (context of software
development),
rate of, 38

changes in context, causes of technical
debt, 157

business context, 157
evolution, 158–159
technology changes, 157–158

checklists, architectural debt analysis,
89

code. See also source code
code inspections (source code

analysis), 74
code smells, 20

Phoebe case study, 66
servicing technical debt, 137

dirty code and technical debt,
125–126

maintainable code, 183–184
quality/standards, avoiding

unintentional debt, 180–183
refactoring code, 184
secure coding, 180–183
spaghetti code, 65–66, 69, 71, 76,

78–79, 91
collective management of technical

debt items, 127–129
conformance/lightweight analysis

(software engineering practices),
managing technical debt,
189–190

consequences (writing technical debt
descriptions), 57, 58

build and integration debt, 111
source code analysis, 77
testing debt, 112

consequences of technical debt, 23, 51,
52, 53, 54–55

Consortium for IT Quality, Automated
Technical Debt Measure
specification, 74–75

context (business) and assessing
technical debt, 58–60, 157

context, changes in (causes of technical
debt), 157

business context, 157
evolution, 158–159
technology changes, 157–158

From the Library of Jan Wielemans

ptg47401904

Index222

context of software development, 37
age of system, 38
architectures, 38
business models, 38
case studies

comparing, 44
contrasting, 40–41

criticality, 39
factors of, 37–39
governance, 39
rate of change, 38
size, 38

KSLOC, 40, 41
MSLOC, 41

team distribution, 38
technical debt and, 44–45, 48

continuous deployment, 104–105
continuous integration, 104–105, 107
contractors, collective management of

technical debt items, 127
conventions (design) and architectural

debt, 84
cost/time pressure, causes of technical

debt, 155–156
costing technical debt, 27

A2DAM, 130
Atlas case study, 117–119
backlogs, grooming, 127–129
benefit/cost comparisons, 123
collective management of technical

debt items, 127–129
current principal, 118
function points, 130
hidden dependencies, 127–128
object points, 130
Phoebe case study, 119–120, 124–125
post facto measurements, 130
recurring interest, calculating,

122–123

refining technical debt descriptions,
119–120

remediating technical debt,
121–122

ROI, 118, 123–125
story points, 130
technical debt has no absolute

measure—neither for principal
nor interest (Principle 8), 124

Tethys case study, 127
tipping points, 118
tool-supported analysis, 123, 130
total effort, 118
use-case points, 130

costs of opportunity, 133, 134–135
Credit Checks, 167, 177, 197, 204

architectures, 171
business vision, 170
causes of technical debt, diagnosing,

172–177
conducting

process of, 169
when to conduct, 168–169

development processes, 171–172
goal of, 167–168
inputs, 169
organizational culture/processes,

172
output from (scorecards), 170
Phoebe case study, 66, 172–173
purpose of, 168
scorecards, 170
team/personnel, 168
Tethys case study, 174–177

criticality (context of software
development), 39

current principal, costing technical
debt, 118

From the Library of Jan Wielemans

ptg47401904

Index 223

CVE (Common Vulnerabilities and
Exposures) database, secure
coding, 183

CWE (Common Weakness
Enumeration) database, secure
coding, 183

D

database debt. See also architectural
debt, 90

accidental database debt, 90
avoiding debt, 92–93
database models and, 92
database performance and balance,

91
intentional database debt, 90
NoSQL databases, 92
query performance, 91
relational databases and, 91–92
schema structure duplication,

90–91
spaghetti code, 91
strings, 91

debt amnesty (write offs), 141
deciding what to fix (technical debt

toolbox/process), 196, 199–200
decision-making process, treating

technical debt, 25–26
defects and technical debt, 21–22
delivering features versus servicing

technical debt, 139–140
dependencies (hidden), costing

technical debt, 127–128
deployment (continuous), 104–105
descriptions of technical debt, writing,

55–58, 63–64
consequences, 57, 58, 77
name field, 57

remediation approaches, 57, 58, 77
reporters/assignees, 57, 58, 77
summaries, 57, 58, 77

designers and architectural debt, 84
analysis tools/techniques, 89, 90

analytic models, 89
checklists, 89
prototypes/simulations, 89
scenario-based analysis, 89
thought experiments/reflective

questions, 89
interviewing designers to determine

debt, 86–88
development processes

causes of technical debt, 159
ineffective documentation,

159–160
misaligned processes, 162
test automation, 160–162

Technical Debt Credit Check,
171–172

development teams, collective
management of technical debt
items, 127

DevOps, 104, 108–109
diagnosing causes of technical debt

with Technical Debt Credit
Check

Phoebe case study, 172–173
Tethys case study, 174–177

Dijkstra, Edsger, 10
dirty code and technical debt, 125–126
distributed teams/personnel

causes of technical debt, 164
context of software development, 38

documenting
architectural debt, 98–99
build and integration debt, 111

From the Library of Jan Wielemans

ptg47401904

Index224

documenting (continued)
ineffective documentation,

development process-related
causes of technical debt, 159–160

software engineering practices,
managing technical debt, 188

software/system architecture
documents, 188

technical debt items (source code
analysis), 76–78

testing debt, 111–112
version control, 188
write-only documents, 188

driving analysis questions, 70–72
duplicate code, handling, 78

E

effects/causes (recognizing technical
debt), chain of, 51–54

effort (total), costing technical debt,
118

Eisenberg, Robert, 190–193
evolution, causes of technical debt,

158–159
exposure to risk, 133–134, 135
external quality (low), technical debt

and, 21–22

F

FBCB2 (Force XXI Battle Command
Brigade and Below),
opportunities and risk, 46–47

feature delivery versus servicing
technical debt, 139–140

fixes, deciding on (technical debt
toolbox/process), 196, 199–200

forecasting, value of technical debt, 29
Fortify security scanning tool, 182–183
function points, costing technical debt,

130

G

gateways and architectural debt, 97
Gibbs, Wayt, 10
governance (context of software

development), 39
grooming product backlogs (costing

technical debt), 127–129

H

hidden dependencies, costing technical
debt, 127–128

I

IEEE 830–1998: Recommended Practice
for Software Requirements
Specifications, 185

incurring technical debt (Principle 2),
32, 206

inexperienced teams/personnel, causes
of technical debt, 163–164

infrastructure as code, 61–62, 105
infrastructure debt, 110, 121–122
initial technical debt, incurring, 24–25
inspecting code (source code analysis),

74
installment plans, repaying technical

debt, 30–31
integration (continuous), 104–105, 107
intentional debt, 90, 153–154
interest on technical debt, 24

accruing interest, 25–26
credit card example, 28–29
defined, 27

recurring interest, 28–29
costing technical debt, 122–123
defined, 27

repaying, 26–27
technical debt has no absolute

measure—neither for principal
nor interest (Principle 8), 124

From the Library of Jan Wielemans

ptg47401904

Index 225

interns, collective management of
technical
debt items, 127

interviewing designers to determine
architectural debt, 86–88

investment
ROI, costing technical debt, 118,

123–125
technical debt as, 143–145

invisibility, landscape of technical
debt, 21

ISO/IEC 25000 standard, maintainable
coding, 183–184

iterations of source code analysis,
78–79

J – K

Keeling, Michael, 125–126
KSLOC, 40, 41

L

landscape of technical debt, 20
architectures, 21
invisibility, 21
production infrastructures, 21
source code, 20

levels of technical debt awareness,
11–12

lightweight analysis/conformance
(software engineering practices),
managing technical debt,
189–190

low external quality and technical debt,
21–22

M

maintainable code, 183–184
maintenance, single points of, 188

managing technical debt
causes of technical debt, identifying,

151–153
business-related causes, 155–157
changes in context, 157–159
development process-related

causes, 159–162
intentional debt, 153–154
main causes of technical debt,

154–155
software development, 152
system artifacts versus causes,

152
team/personnel-related causes,

162–165
unintentional debt, 153

collectively, 127–129
software development, 204–205
software engineering practices,

179–180, 193
agile practices, managing

technical debt at scale,
190–193

architectural development/design,
185–190

code quality/standards, 180–183
documentation, 188
lightweight analysis/

conformance, 189–190
maintainable code, 183–184
refactoring code, 184
secure code, 180–183

Technical Debt Credit Check,
167, 177
architectures, 171
business vision, 170
causes of technical debt,

diagnosing, 172–177
conducting, process of, 169

From the Library of Jan Wielemans

ptg47401904

Index226

managing technical debt (continued)
conducting, when to conduct,

168–169
development processes, 171–172
goal of, 167–168
inputs, 169
organizational culture/processes,

172
output from (scorecards), 170
purpose of, 168
scorecards, 170
team/personnel, 168

technical debt toolbox/process, 195,
196
assessing information, 195,

197–198
Atlas case study, 202
becoming aware, 195, 196–197
building technical debt registries,

195, 198–199
deciding what to fix, 196,

199–200
Phoebe case study, 202–203
taking action, 196, 200–201
Tethys case study, 203–204

mandatory updates, 188
mapping, technical debt items, 22
misaligned business goals, causes of

technical debt, 156
misaligned processes, development

process-related causes of
technical debt, 162

mitigating risk, servicing technical
debt, 140–141, 143

MITRE Corporation, secure coding,
183

modifiability and architectural debt, 96
modularity and architectural debt, 83

monitoring (self), production
infrastructure/architecture
alignment, 187

MSLOC, 41

N

name field (writing technical debt
descriptions), 57

naming, technical debt, 16
NATO Software Engineering

Conference (1969), software
crisis, 10

negative values (risk mitigation),
140–141

Northrop, Ben, 30–31
Northrop, Linda, 46–48
NoSQL databases and technical debt,

92
NPV (Net Present Values), technical

debt as investment, 143–145

O

object points, costing technical debt,
130

observable measurement criteria
(source code analysis), 72–74

occurrence (timeline of technical
debt), 33

OMG (Object Management Group),
Automated Technical Debt
Measure specification, 74–75

Open Web Application Security, 183
opportunities and risk, 46–48
opportunity costs, 133, 134–135
optimizing value of technical debt, 29
organizational culture/processes

(Technical Debt Credit Check),
8–9, 172

From the Library of Jan Wielemans

ptg47401904

Index 227

P

pain points, source code analysis,
68–72

parameterization, production
infrastructure/architecture
alignment, 187

peer reviews (source code analysis), 74
performance

database performance and balance,
91

query performance and database
debt, 91

personnel/teams
causes of technical debt, 162–163

distributed teams/personnel, 164
inexperienced teams/personnel,

163–165
contractors, collective management

of technical debt items, 127
interns, collective management of

technical debt items, 127
Technical Debt Credit Check,

168–169
Phoebe case study, 40, 42–43

architectural debt, 85, 94–95
analysis tools/techniques, 97–98
business goals and, 95–96
concerns/questions, 95–96
defining measurement criteria,

96–97
documenting debt, 98–99
servicing debt, 98–99

causes of technical debt
diagnosing with Technical Debt

Credit Check, 172–173
identifying, 156, 157–158

code quality/standards, 181–183
comparing case studies, 44

contrasting case studies, 40–41
costing technical debt, 119–120,

124–125
production debt, 105, 110–111
servicing technical debt

mitigating risk, 143
release pipeline, 143

source code analysis, 65–68
analysis tools, 75–76
business goals, 68–69
documenting technical debt

items, 76–78
duplicate code, handling, 78
identifying questions about

source code, 70–72
iterations of analysis, 78–79
observable measurement criteria,

72–74
technical debt registries, building,

135–136
technical debt toolbox/process,

202–203
planning releases, servicing technical

debt, 142–143
Poort, Eltjo R., 133
post facto costing of technical

debt, 130
potential technical debt

actual technical debt versus, 32, 33,
138, 140

misaligned business goals, 156
requirements shortfall, 156
servicing technical debt, 138, 140
time/cost pressure, 155

principal on technical debt
current principal, costing technical

debt, 118
defined, 24, 27
repaying, 25–26

From the Library of Jan Wielemans

ptg47401904

Index228

principles of technical debt, 13
Principle 1: Technical debt reifies an

abstract concept, 14, 16, 206
Principle 2: If you do not incur

any form of interest, then you
probably do not have actual
technical debt, 32, 206

Principle 3: All systems have
technical debt, 45, 152, 158, 180,
206

Principle 4: Technical debt must
trace to the system, 55, 152, 206

Principle 5: Technical debt is not
synonymous with bad quality,
67, 180, 206

Principle 6: Architecture technical
debt has the highest cost of
ownership, 86, 180

Principle 7: All code matters, 107,
206

Principle 8: Technical debt has no
absolute measure—neither for
principal nor interest, 124, 206

Principle 9: Technical debt depends
on the future evolution of the
system, 139, 206

process misalignment, development
process-related causes of
technical debt, 162

product backlogs, grooming (costing
technical debt), 127–129

production
assessing technical debt, 61–62
production infrastructures

architecture alignment, 187
landscape of technical debt, 21

production debt
Atlas case study, 105
automation, 107

build and integration debt, 106–107,
111

continuous deployment, 104–105
continuous integration, 104–105,

107
DevOps, 104
infrastructure as code, 105
infrastructure debt, 110
Phoebe case study, 105, 110–113
release pipeline, 104–105
SaaS, 103–104
scripts, 105
servicing debt, 113
software, 105–106
testing debt, 109–110, 111–112
Tethys case study, 105

prototypes/simulations, architectural
debt analysis, 89

Q

quality of code, 67
Consortium for IT Quality, 74–75
unintentional debt, avoiding,

180–183
queries, database debt and query

performance, 91
questions about source code (source

code analysis), identifying, 70–72

R

rate of change (context of software
development), 38

recognizing technical debt, 51
business context and, 58–60
chain of causes/effects, 51–54
visible consequences of technical

debt, 54–55
writing technical debt descriptions,

55–58, 63–64

From the Library of Jan Wielemans

ptg47401904

Index 229

consequences, 57, 58
name field, 57
remediation approaches, 57, 58
reporters/assignees, 57, 58
summaries, 57, 58

recurring interest
calculating, costing technical debt,

122–123
credit card example, 28–29
defined, 27

refactoring code, 79–80, 184
refining technical debt descriptions,

costing technical debt, 119–120
reflective questions/thought

experiments, architectural debt
analysis, 89

registries (technical debt), building,
195, 198–199

relational databases and technical debt,
91–92

release pipeline, 104–105, 142–143
release planning, architectural

development/design, 186–187
remediation

costing technical debt, 121–122
timeline of technical debt, 34

remediation approaches
ROI, building technical debt

registries, 135–136
writing technical debt descriptions,

57, 58
build and integration debt, 111
ROI, calculating (costing

technical debt), 123–125
source code analysis, 77
testing debt, 112

remediation points, servicing technical
debt, 132

repaying
interest on technical debt, 26–27

principal on technical debt, 25–26
technical debt

accruing additional debt versus
repaying debt, 25–26

installment plans, 30–31
reporters/assignees (writing technical

debt descriptions), 57, 58
build and integration debt, 111
source code analysis, 77
testing debt, 112

requirements
requirements shortfall, causes of

technical debt, 156–157
unimplemented requirements and

technical debt, 21–22
reviews (peer), source code analysis, 74
risk

exposure to, 133–134, 135
opportunities and, 46–48
mitigation, servicing technical debt,

140–141, 143
ROI (Return Of Investment)

costing technical debt, 118, 123
servicing technical debt, building

technical debt registries, 135–136
runways (architectural), 186

S

SaaS (Software as a Service), 103–104
SAFe (Scaled Agile Framework),

architectural runways, 186
scenario-based analysis, architectural

debt analysis, 89
schema structure duplication, 90–91
Scientific American, software crisis, 10
scorecards (Technical Debt Credit

Check), 170
scripts, 105
secure coding, 180–183
security and architectural debt, 96–97

From the Library of Jan Wielemans

ptg47401904

Index230

SEI CERT Secure Coding Standards,
183

self-initiated version updating,
production infrastructure/
architecture alignment, 187

self-monitoring, production
infrastructure/architecture
alignment, 187

servicing technical debt
actual technical debt versus potential

technical debt, 138, 140
bankruptcy, declaring, 141
costs/benefits of, 131–132, 139–140
debt amnesty (write offs), 141
decision points, 138
feature delivery versus, 139–140
investment, technical debt as,

143–145
mitigating risk, 140–141, 143
opportunity costs, 133, 134–135
paths of servicing, 136–138

release pipeline, 142–143
technical debt as investment,

143–145
potential technical debt versus actual

technical debt, 138, 140
release pipeline, 142–143
remediation points, 132
risk exposure, 133–134, 135
technical debt registries, building,

135–136
technical debt depends on the future

evolution of the system (Principle 9),
139

tipping points, 132
simulations/prototypes, architectural

debt analysis, 89
single points of maintenance, 188

size (context of software development),
38

KSLOC, 40, 41
MSLOC, 41

software
automation, 107
build and integration debt, 106–107
continuous deployment, 104–105
continuous integration, 104–105, 107
crisis, 10–11
DevOps, 104
infrastructure debt, 110
production debt, 105–106
release pipeline, 104–105
SaaS, 103–104
scripts, 105
testing debt, 109–110

software development
backlogs, 62–63
causes of technical debt, identifying,

152
context of software development,

37
age of system, 38
architectures, 38
business models, 38
comparing case studies, 44
contrasting case studies, 40–41
criticality, 39
factors of, 37–39
governance, 39
rate of change, 38
size, 38
size, KSLOC, 40, 41
size, MSLOC, 41
team distribution, 38
technical debt and, 44–45, 48

technical debt and, 204–205

From the Library of Jan Wielemans

ptg47401904

Index 231

software engineering practices,
managing technical debt,
179–180, 193

agile practices, managing technical
debt at scale, 190–193

architectural development/design,
185
production infrastructure/

architecture alignment, 187
quality attributes/requirements,

185–186
release planning, 186–187

code quality/standards, 180–183
documentation, 188
lightweight analysis/conformance,

189–190
maintainable code, 183–184
refactoring code, 184
secure code, 180–183

software-intensive systems, technical
debt, 5

software/system architecture
documents, 188

SonarQube static analyzer, 75–76
source code. See also code

all code matters (Principle 7), 107
analysis

analysis tools, 74–76
Automated Technical Debt

Measure specification, 74–75
business goals, 68–69
code inspections, 74
code smells, 66
documenting technical debt

items, 76–78
driving analysis questions, 70–72
identifying questions about

source code, 70–72
iterations of analysis, 78–79

observable measurement criteria,
72–74

pain points, 68–69, 70–72
pain points, identifying questions

about source code, 70–72
peer reviews, 74
Phoebe case study, 65–69, 75–78
refactoring source code, 79–80
SonarQube static analyzer, 75–76
static analyzers, 65–66, 74–76
symptom measures, 72–73
Technical Debt Credit Checks,

66, 68–70
Tricorder static analyzer, 75

assessing technical debt, 60–61
code smells, 20, 66
duplicate code, handling, 78
landscape of technical debt, 20
pain points

business goals and pain points,
68–69, 70–72

identifying questions about
source code, 70–72

quality of code, 67
refactoring, 79–80
remediating technical debt, 121–122
spaghetti code, 65–66, 69, 71,

76, 78–79
technical debt is not synonymous

with bad quality (Principle 5), 67
spaghetti code, 65–66, 69, 71, 76,

78–79, 91
static analyzers (source code analysis),

74–75
Phoebe case study, 65–66
SonarQube static analyzer, 75–76
Tricorder static analyzer, 75

story points, costing technical
debt, 130

From the Library of Jan Wielemans

ptg47401904

Index232

strings and database debt, 91
structures, schema structure

duplication, 90–91
summaries (writing technical debt

descriptions), 57, 58
build and integration debt,

production debt, 111
source code analysis, 77
testing debt, 112

symptom measures (source code
analysis), 72–73

symptoms of technical debt, 51, 52, 53,
84–85

system (context of software
development), age of, 38

system artifacts, causes of technical
debt versus, 152

T

tactical investment, 9
taking action (technical debt toolbox/

process), 196, 200–201
team distribution (context of software

development), 38
teams/personnel

causes of technical debt, 162–163
distributed teams/personnel, 164
inexperienced teams/personnel,

163–164
undedicated teams/personnel,

164–165
contractors, collective management

of technical debt items, 127
interns, collective management of

technical debt items, 127
Technical Debt Credit Check,

168–169
technical debt registries, building,

135–136

technical debt, 205–206
accruing additional debt versus

repaying debt, 25–26
actual technical debt versus

potential technical debt versus,
32, 33, 138, 140

servicing technical debt, 138, 140
amnesty of debt (write offs),

140–141
assessing

architectures, 61
business context and, 58–60
production, 61–62
source code, 60–61

awareness, 33, 53–54
awareness levels, 11–12
business-related causes, 155

misaligned business goals, 156
requirements shortfall, 156–157
time/cost pressure, 155–156

causes of technical debt, diagnosing
with Technical Debt Credit
Check
Phoebe case study, 172–173
Tethys case study, 174–177

causes of technical debt, identifying,
151–153
business-related causes, 155–157
changes in context, 157–159
development process-related

causes, 159–162
intentional debt, 153–154
main causes of technical debt,

154–155
software development, 152
system artifacts versus causes,

152
team/personnel-related causes,

162–165
unintentional debt, 153

From the Library of Jan Wielemans

ptg47401904

Index 233

changes in context, causes of
technical debt, 157
business context, 157
evolution, 158–159
technology changes, 157–158

consequences of, 51, 52, 53
visible consequences, 54–55

context of software development,
44–45, 48

cost of, 27
costing

A2DAM, 130
Atlas case study, 117–119
benefit/cost comparisons, 123
calculating recurring debt,

122–123
collective management of

technical debt items, 127–129
current principal, 118
function points, 130
grooming product backlogs,

127–129
hidden dependencies, 127–128
object points, 130
Phoebe case study, 119–120,

124–125
post facto measurements, 130
refining technical debt

descriptions, 119–120
remediating technical debt,

121–122
ROI, 118, 123–125
story points, 130
technical debt has no absolute

measure—neither for principal
nor interest (Principle 8), 124

Tethys case study, 127
tipping points, 118
tool-supported analysis, 123, 130

total effort, 118
use-case points, 130

debt amnesty (write offs),
140–141

defects and, 21–22
defined, 3–4, 5–6, 19
development process-related causes,

159
ineffective documentation,

159–160
misaligned processes, 162
test automation, 160–162

DevOps and, 108–109
diagnosing with Technical Debt

Credit Check
Phoebe case study, 172–173
Tethys case study, 174–177

dirty code and, 125–126
examples of, 6–10
friction analogy, 4
initial debt, incurring, 24–25
interest

accruing, 25
accruing interest, 27, 28–29
recurring interest, 27, 28–29
repaying, 26–27

investment, technical debt as,
143–145

landscape of, 20
architectures, 21
invisibility, 21
production infrastructures, 21
source code, 20

low external quality and,
21–22

major concepts of, 15
naming, 16
occurrence, 33
pervasiveness of, 4

From the Library of Jan Wielemans

ptg47401904

Index234

technical debt (continued)
potential technical debt

actual technical debt versus, 32,
33, 138, 140

misaligned business goals, 156
requirements shortfall, 156
servicing technical debt, 138, 140
time/cost pressure, 155

principal
defined, 27
repaying, 25–26

principles of, 13
all code matters (Principle 7),

107, 206
all systems have technical debt

(Principle 3), 45, 152, 158,
180, 206

architectural technical debt has
the highest cost of ownership
(Principle 6), 86, 180
incurring technical debt
(Principle 2), 32, 206

technical debt depends on the
future evolution of the system
(Principle 9), 139, 206

technical debt has no absolute
measure—neither for principal
nor interest (Principle 8), 124,
206

technical debt is not synonymous
with bad quality (Principle 5),
67, 180, 206

technical debt must trace to the
system (Principle 4), 55, 152,
206

technical debt reifies an abstract
concept (Principle 1), 14,
16, 206

recognizing, 51
business context and, 58–60

chain of causes/effects, 51–54
visible consequences of technical

debt, 54–55
writing technical debt

descriptions, 55–58, 63–64
remediation, 34
repaying

accruing additional debt versus
repaying debt, 25–26

installment plans, 30–31
interest on technical debt, 26–27

scope of, 4
servicing

actual technical debt versus
potential technical debt, 138,
140

building technical debt registries,
135–136

costs/benefits of, 131–132,
139–140

debt amnesty (write offs), 141
decision points, 138
declaring bankruptcy, 141
feature delivery versus, 139–140
mitigating risk, 140–141, 143
opportunity costs, 133, 134–135
paths of, 136–138, 142–145
potential technical debt versus

actual technical debt, 138, 140
release pipeline, 142–143
remediation points, 132
risk exposure, 133–134, 135
technical debt as investment,

143–145
technical debt depends on the

future evolution of the system
(Principle 9), 139

tipping points, 132
software development and, 204–205
software-intensive systems, 5

From the Library of Jan Wielemans

ptg47401904

Index 235

symptoms of, 51, 52, 53, 84–85
teams/personnel-related causes,

162–163
distributed teams/personnel, 164
inexperienced teams/personnel,

163–164
undedicated teams/personnel,

164–165
timeline of, 33, 118–119
tipping point, 34
treating debt, decision-making

process, 25–26
unimplemented requirements and,

21–22
unintentional debt, timeline of

technical debt, 196
value of, 27, 29

defined, 29
forecasting, 29
optimizing, 29

visible consequences of technical
debt, 54–55

writing technical debt descriptions,
55–58, 63–64
consequences, 57, 58
name field, 57
remediation approaches, 57, 58
reporters/assignees, 57, 58
source code analysis, 76–78
summaries, 57, 58

Technical Debt Credit Check, 167,
177, 197, 204

architectures, 171
business vision, 170
causes of technical debt, diagnosing,

172–177
conducting

process of, 169
when to conduct, 168–169

development processes, 171–172

goal of, 167–168
inputs, 169
organizational culture/processes,

172
output from (scorecards), 170
Phoebe case study, 66, 172–173
purpose of, 168
scorecards, 170
team/personnel, 168
Tethys case study, 174–177

technical debt depends on the future
evolution of the system
(Principle 9), 139, 206

technical debt has no absolute
measure—neither for principal
nor interest (Principle 8), 124, 206

technical debt is not synonymous
with bad quality (Principle 5), 67,
180, 206

technical debt items, 53
artifacts, 22
causes, 22–23
consequences, 23
defined, 22
interest of, defined, 24
managing collectively, 127–129
mapping, 22
principle of, defined, 24

technical debt must trace to the system
(Principle 4), 55, 152, 206

technical debt registries, building, 195,
198–199

technical debt reifies an abstract
concept (Principle 1), 206

technical debt toolbox/process,
195, 196

assessing information, 195, 197–198
Atlas case study, 202
becoming aware, 195, 196–197

From the Library of Jan Wielemans

ptg47401904

Index236

technical debt toolbox/process
(continued)

building technical debt registries,
195, 198–199

deciding what to fix, 196, 199–200
Phoebe case study, 202–203
taking action, 196, 200–201
Tethys case study, 203–204

technological gaps, 84, 96
technology changes, causes of technical

debt, 157–158
test automation, development process-

related causes of technical debt,
160–162

testing debt, 109–110, 111–112
Tethys case study, 40, 43–44

causes of technical debt
diagnosing with Technical Debt

Credit Check, 174–177
identifying, 156–157, 160, 164

comparing case studies, 44
contrasting case studies, 40–41
costing technical debt, 127
production debt, 105
technical debt toolbox/process,

203–204
thought experiments/reflective

questions, architectural debt
analysis, 89

time/cost pressure, causes of technical
debt, 155–156

timeline of technical debt, 33, 205
awareness, 33, 53–54
costing technical debt, 118–119
occurrence, 33
remediation, 34
source code analysis, business goals

and pain points, 68–69
tipping point, 34
unintentional debt, 196

tipping points, 34
costing technical debt, 118
servicing technical debt, 131–132

total effort, costing technical debt, 118
treating technical debt, decision-

making process, 25–26
Tricorder static analyzer, 75

U

undedicated teams/personnel, causes of
technical debt, 164–165

unimplemented requirements, technical
debt and, 21–22

unintentional debt, 153
avoiding with software engineering

practices, 179–180, 193
agile practices, managing

technical debt at scale,
190–193

architectural development/design,
185–190

code quality/standards, 180–183
documentation, 188
lightweight analysis/

conformance, 189–190
maintainable code, 183–184
refactoring code, 184
secure code, 180–183

timeline of technical debt, 196
updating

mandatory updates, 188
self-initiated version updating,

production infrastructure/
architecture alignment, 187

use-case points, costing technical debt,
130

V

value of technical debt, 27, 29
defined, 29

From the Library of Jan Wielemans

ptg47401904

Index 237

forecasting, 29
optimizing, 29

version control, documenting, 188
version updating (self-initiated),

production infrastructure/
architecture alignment, 187

visible consequences of technical debt,
54–55

W

WIRE team, dirty code and technical
debt, 125–126

Woods, Eoin, 90–93
write-only documents, 188
writing off technical debt (debt

amnesty), 141
writing technical debt descriptions,

55–58, 63–64
build and integration debt, 111

consequences, 57, 58
build and integration debt, 111
source code analysis, 77
testing debt, 112

name field, 57
remediation approaches, 57, 58

build and integration debt, 111
source code analysis, 77
testing debt, 112

reporters/assignees, 57, 58, 77
summaries, 57, 58

build and integration debt, 111
source code analysis, 77
testing debt, 112

testing debt, 112

X – Y – Z

Y2K, opportunities and risk, 46

From the Library of Jan Wielemans

ptg47401904

This page intentionally left blank

From the Library of Jan Wielemans

ptg47401904

V I D E O T R A I N I N G F O R T H E I T P R O F E S S I O N A L

*Discount code VIDBOB confers a 50% discount off the list price of eligible titles purchased on informit.com. Eligible titles include most full-course video titles. Book + eBook bundles,
book/eBook + video bundles, individual video lessons, Rough Cuts, Safari Books Online, non-discountable titles, titles on promotion with our retail partners, and any title featured
as eBook Deal of the Day or Video Deal of the Week is not eligible for discount. Discount may not be combined with any other offer and is not redeemable for cash. Offer subject to change.

Learn more, browse our store, and watch free, sample lessons at
i n f o r m i t . co m / v i d e o

Save 50%* off the list price of video courses with discount code VIDBOB

LEARN QUICKLY
Learn a new technology in just hours. Video training can teach more in
less time, and material is generally easier to absorb and remember.

WATCH AND LEARN
Instructors demonstrate concepts so you see technology in action.

TEST YOURSELF
Our Complete Video Courses offer self-assessment quizzes throughout.

CONVENIENT
Most videos are streaming with an option to download lessons for offline viewing.

From the Library of Jan Wielemans

http://informit.com
http://informit.com/video

ptg47401904

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certif ication • Prentice Hall • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

• Download available product updates.
• Access bonus material if available.*

• Check the box to hear from us and receive exclusive offers on new
editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

• Shop our books, eBooks, software, and video training
• Take advantage of our special offers and promotions (informit.com/promotions)
• Sign up for special offers and content newsletter (informit.com/newsletters)
• Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

Photo by izusek/gettyimages

From the Library of Jan Wielemans

http://informit.com/register
http://InformIT.com
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community

ptg47401904

Name What is it? This field is a shorthand name for the technical
debt item.

Summary Where do you observe the technical debt in the affected
development artifacts, and where do you expect it to
accumulate?

Consequences Why is it important to address this technical debt item?
Consequences include immediate benefits and costs as well
as those that accumulate later, such as additional rework
and testing costs as the issue stays in the system and costs
due to reduced productivity, induced defects, or loss of
quality incurred by building software that depends on an
element of technical debt.

Remediation
approach

Describe the rework needed to eliminate the debt, if any.
When should the remediation occur to reduce or eliminate
the consequences?

Reporter/assignee Who is responsible for servicing the debt? Assign a person
or team. While in most cases the who aspect can be trivial,
in some situations the debt resolution may need to be
assigned to external parties. If remediation is significantly
postponed, this field can communicate that decision.

Technical Debt Description

From the Library of Jan Wielemans

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	About the Contributors
	Acronyms
	SEI Figures for Managing Technical Debt
	Part I: Exploring the Technical Debt Landscape
	Chapter 1: Friction in Software Development
	The Promise of Managing Technical Debt
	Technical Debt A-B-C
	Examples of Technical Debt
	Your Own Story About Technical Debt?
	Who Is This Book For?
	Principles of Technical Debt Management
	Navigating the Concepts of the Book
	What Can You Do Today?
	For Further Reading

	Chapter 2: What Is Technical Debt?
	Mapping the Territory
	The Technical Debt Landscape
	Technical Debt Items: Artifacts, Causes, and Consequences
	Principal and Interest
	Cost and Value
	Potential Debt versus Actual Debt
	The Technical Debt Timeline
	What Can You Do Today?
	For Further Reading

	Chapter 3: Moons of Saturn—The Crucial Role of Context
	“It Depends…”
	Three Case Studies: Moons of Saturn
	Technical Debt in Context
	What Can You Do Today?
	For Further Reading

	Part II: Analyzing Technical Debt
	Chapter 4: Recognizing Technical Debt
	Where Does It Hurt?
	What Are the Visible Consequences of Technical Debt?
	Writing a Technical Debt Description
	Understanding the Business Context for Assessing Technical Debt
	Assessing Artifacts Across the Technical Debt Landscape
	What Can You Do Today?
	For Further Reading

	Chapter 5: Technical Debt and the Source Code
	Looking for the Magic Wand
	Understand Key Business Goals
	Identify Questions About the Source Code
	Define the Observable Measurement Criteria
	Select and Apply an Analysis Tool
	Document the Technical Debt Items
	Then Iterate
	What Happens Next?
	What Can You Do Today?
	For Further Reading

	Chapter 6: Technical Debt and Architecture
	Beyond the Code
	Ask the Designers
	Examine the Architecture
	Examine the Code to Get Insight into the Architecture
	The Case of Technical Debt in the Architecture of Phoebe
	What Can You Do Today?
	For Further Reading

	Chapter 7: Technical Debt and Production
	Beyond the Architecture, the Design, and the Code
	Build and Integration Debt
	Testing Debt
	Infrastructure Debt
	The Case of Technical Debt in the Production of Phoebe
	What Can You Do Today?
	For Further Reading

	Part III: Deciding What Technical Debt to Fix
	Chapter 8: Costing the Technical Debt
	Shining an Economic Spotlight on Technical Debt
	Refine the Technical Debt Description
	Calculate the Cost of Remediation
	Calculate the Recurring Interest
	Compare Cost and Benefit
	Manage Technical Debt Items Collectively
	What Can You Do Today?
	For Further Reading

	Chapter 9: Servicing the Technical Debt
	Weighing the Costs and Benefits
	Paths for Servicing Technical Debt
	The Release Pipeline
	The Business Case for Technical Debt as an Investment
	What Can You Do Today?
	For Further Reading

	Part IV: Managing Technical Debt Tactically and Strategically
	Chapter 10: What Causes Technical Debt?
	The Perplexing Art of Identifying What Causes Debt
	The Roots of Technical Debt
	What Causes Technical Debt?
	Causes Rooted in the Business
	Causes Arising from Change in Context
	Causes Associated with the Development Process
	Causes Arising from People and Team
	To Conclude
	What Can You Do Today?
	For Further Reading

	Chapter 11: Technical Debt Credit Check
	Identifying Causes: Technical Debt Credit Check
	Four Focus Areas for Understanding the State of a Project
	Diagnosing the Causes of Technical Debt in Phoebe
	Diagnosing the Causes of Technical Debt in Tethys
	What Can You Do Today?
	For Further Reading

	Chapter 12: Avoiding Unintentional Debt
	Software Engineering in a Nutshell
	Code Quality and Unintentional Technical Debt
	Architecture, Production, and Unintentional Technical Debt
	What Can You Do Today?
	For Further Reading

	Chapter 13: Living with Your Technical Debt
	Your Technical Debt Toolbox
	On the Three Moons of Saturn…
	Technical Debt and Software Development
	Finale

	Glossary
	A
	B
	C
	D
	F
	I
	P
	Q
	R
	S
	T
	V

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

